National 5 Chemistry

Unit 1:

Chemical Changes & Structure

Topics	Sections		Done	Checked
0.1	1. Stability			
2.1	2. Emissions			
Radioactivity	3. Nuclear Equations			
	Self -Check Questions 1 - 8	Score: /		
2.2	1. Radioactivie Decay			
Nuclear	2. Using Radioisotopes			
Nuclear	Nuclear Energy			
Chemistry	Self -Check Questions 1 - 5	Score: /		
2.3	1. Electron Shells			
Electron	2. Electrons & The Periodic table			
Arrangements	3. Electrons & Bonding Powers			
Arrangements	Self -Check Questions 1 - 8	Score: /		
	Consolidation A	Score: /		
Consolidation	Consolidation B	Score: /		
Work	Consolidation C	Score: /		
	Consolidation D	Score: /		
End-off-Unit Assessment	Score:	To Grade:		

2.1 Radioactivity

nuclei usually 'prefer' *equ numbers*:- *neutron* : *proton ratio* = 1 ★ sma usually have too many **neut** , so a *neut* unsta nuc changes into and an *elec* . The *elec* is *emi* as a β -particle. a *pro* ${}^{1}_{1}p$ ${}^{1}_{0}n$ $^{0}_{-1}e$ + ${}^{14}_{6}C$ $^{0}_{-1}e$ $^{14}_{7}$ N +e.g. *nuclei* 'need' *mo neut* :- *neutron* : *proton ratio* = 1.5 larg *

unst nuc usually have too much mass, so an
$$\alpha$$
-particle is **emi** to reduce mass and **impr** the proton:neutron ratio.

e.g.
$$^{232}_{90}$$
 Th $\longrightarrow ^{228}_{88}$ Ra $+ ^{4}_{2}$ He

* above atomic number 83 almost all isotopes are unstable.

Other processes such as 'electron capture', 'neutron capture' and 'proton emission' are possible but the main processes are the **emission** of α -particles and β -particles. KHS Aug 2013 page 2 National 5

Emissions α -particles β-particles

γ-rays

Most radioactivity involves the *emi* of - and -particles but *en* , in the form of *high frequency electromagnetic radiation* is also released. These γ -rays are the same as other *electro radia* such as *radio-waves*, *visible light* and *x-rays* but are of *hig ene* and, therefore, *more dang* .

Property		ssion	
	α-particle	β-particle	γ-rays
nature	2 <i>pro</i> , 2 <i>neut</i> (He nucleus)	<i>elec</i> $(n \rightarrow p + e)$	high <i>frequ</i> radiation
charge			0
mass			0
stopped by	рар	<i>alum</i> foil	<i>le</i> sheet
electric field	<i>slightly</i> towards <i>neg</i> plate	<i>greatly</i> towards pos plate	no effect

All 3 types of *rad* are capable of knocking *ele* off any atoms they *coll* with so are sometimes referred to as *ionising rad*.

The *ionising* effect of the *rad* is used to both *det* and *cou* radiation - each particle entering the *detector* triggers an *ele* and the *flow of electrons* (*current*) determines the *am* .

The ioneffect of the radcan lead to harchanges in human tissue - hence the protective clothing.

National 5

Nuclear Equations

 $\begin{array}{r} \textit{mass} \rightarrow 206 \\ \textit{charge} \rightarrow 82 \end{array}$

With the exception of γ -rays, all nuclear reactions involve particles with mass and charge so we can continue to write equations to represent these processes.

Most atoms continue to be represented by their usual *sym* except that *ma numbers* are now *essential* and the *'ato number'* now represents the *'charge on the particle'*

$^{+}_{2}$ He	α - particles	(strictly speaking ${}_{2}^{4}\text{He}^{2+}$)
${}^{0}_{-1}e$	β - particles	(slow moving electrons emitted from the nucleus.)
${}^{1}_{0}n$	neutrons	
${}^{1}_{1}p$	<i>protons</i> (so hy	metimes represented as ${}^{1}_{1}$ H ⁺ since a vdrogen ion is just a proton)

As with all other *equa*, the both sides must be the *sa* and an

, these must be *bal* . This means that the *overall mass* on and the *overall charge* on both sides must be the *sa* .

e.g.	$^{14}_{6}C$	\longrightarrow		$^{14}_{7}N$	+	0e	
mass	s =	Й	nass	=	+		=
charge	<i>e</i> =	ch	arge	=	+		=

Typical processes include:-

Alpha decay	²³⁰ ₉₂ U		\rightarrow		+	${}^{4}_{2}$ He
Beta decay	²¹⁶ ₈₄ Po —	\rightarrow		+	$^{0}_{-1}e$	
Gamma decay	this is the emis	sion of e	nergy so n	no equation po	ossible	
Neutron capture/	this reaction occurs	naturally in	the uppper at	nosphere triggered	by cosmic r	ays
Proton emission	$^{14}_{7} N$ +	${}^{1}_{0}n$	_	\longrightarrow	+	${}^{1}_{1}p$
Electron capture	sometimes isotopes h convert a proton into	ave too few a neutron	neutrons so c	apture an electron f	rom their fir	rst shell and
	$^{37}_{18}{ m Ar}$	+	$^{0}_{-1}e$	\longrightarrow		
Nuclear Fusion	in suns, at temperatu	res of about	t 10 million K,	small atoms can fu	se together	
	${}^{2}_{1}$ H	+	${}^{3}_{1}$ H	\longrightarrow	+	${}^{1}_{0}n$
'Man-made' processo	es include:-					
Nuclear Fission	in power stations ato split apart to form sn	oms are bom naller atoms	barded with n	eutrons to form uns	table nuclei	which then

 ${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} \longrightarrow {}^{140}_{54}\text{Xe} + {}^{2}_{0}\text{n}$

The development of high energy particle accelerators means that just about any particle can be fired into an atom leading to a variety of methods for producing various unstable nuclei -*radioisotopes*

Q5.]
Whicl emits emits	h particle will be formed when an atom of $^{211}_{83}$ Bi an α-particle and the decay product then a β-particle?
A	²⁰⁷ ₈₂ Pb
В	²⁰⁸ ₈₁ Tl
С	²⁰⁹ ₈₀ Hg
D	²¹⁰ ₇₉ Au
Q6.]
Sever uses. of the	ral of the radioactive isotopes of iodine have medical Iodine-131, for example, is used in the study e thyroid gland and it decays by beta emission.
,	
b)	complete the balanced nuclear equation for the beta decay of iodine-131.
b)	complete the balanced nuclear equation for the beta decay of iodine-131. $\begin{array}{c} 131\\ 53 \end{array} I \longrightarrow \end{array}$
<i>b</i>) Q7.	complete the balanced nuclear equation for the beta decay of iodine-131. ${}^{131}_{53}I \rightarrow$
b) Q7. Thori	complete the balanced nuclear equation for the beta decay of iodine-131. $131_{53} I \rightarrow$ um-227 decays by alpha emission.
b) Q7. Thoric a)	complete the balanced nuclear equation for the beta decay of iodine-131. $131_{53} I \rightarrow$ um-227 decays by alpha emission. Complete the nuclear equation for the decay of thorium-227.
b) Q7. Thori <i>a</i>)	complete the balanced nuclear equation for the beta decay of iodine-131. ${}^{131}_{53}I \rightarrow$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b) Q7. Thorit a) b)	complete the balanced nuclear equation for the beta decay of iodine-131. ${}^{131}_{53}I \rightarrow$ 131 J \rightarrow 131 J \rightarrow 131 J J J J J J J J J J J J J J J J J J
 b) Q7. Thorized a) b) 	complete the balanced nuclear equation for the beta decay of iodine-131. ${}^{131}_{53}I \rightarrow$ 1 um-227 decays by alpha emission. Complete the nuclear equation for the decay of thorium-227. ${}^{227}Th \rightarrow$ A sample of thorium-227 was placed in a wooden box. A radiation detector was held 10 cm away from the box. Why was alpha radiation not detected?
 b) Q7. Thorit a) b) 	complete the balanced nuclear equation for the beta decay of iodine-131. ${}^{131}_{53}I \rightarrow$ 1 um-227 decays by alpha emission. Complete the nuclear equation for the decay of thorium-227. ${}^{227}Th \rightarrow$ A sample of thorium-227 was placed in a wooden box. A radiation detector was held 10 cm away from the box. Why was alpha radiation not detected?

An atom of ²²⁷Th decays by a series of alpha emissions to form an atom of ²¹¹Pb. How many alpha particles are released in the process?

2.2 Nuclear Chemistry

Radioactive Decay

The breakdown of the *nuc* of *unsta* atoms is known as *decay*.

It is a totally *rand* process, i.e it is *impo* to predict exactly when a *particular* nuc will break apart.

It is also a purely *nuc* reaction i.e. it is not affected by most of the factors that affect normal chemical reactions such as:-

state	solid, liquid, gas, solution, lump, powder etc. makes no difference
temperature	do not decay faster when hot
form	atoms, ions, single or in molecules makes no difference
pressure	has no effect
catalysts	have no effect

Though *ran*

, the *dec* will still follow a *predi*

patt

Starting with g of radioactive material, a gei counter could detect particles being emi every minute.

The *ma* of radioactive material decr , as does the act

The *decr* is not *cons* (i.e. not a stra *line*), but it does follow a *patt*

After a *certain time* the *ma* of radioactive material will fall to *half its original value*. The will also be *halved*. It will then take the *same length of time* for the *ma*, and the act , to *half again*. This time is known as the *half-life* ($t_{_{1\!/_2}}$). In the example above, the act half-life, $t_{1/2}$, = minutes.

Topic 2 Starting with a *diff mass*, **80**g, of radioactive material, a *gei counter* would detect a *lower act* ,only particles being *emi* every minute. However the *half-life* remains at

However the *half-life* remains at minutes.

The *patt* for the *dec* remains the same *regardless of the mass you start with*.

Diff isotopes *dec* at *different rates* but all show this pattern:-

some have a very sho half-life

e.g 220 Ra $t_{\gamma_2} = 55$ seconds

others have a very lo half-life

e.g 238 U $t_{y_2} = 4.51 \times 10^9$ years

Radioisotope	Symbol	Radiation	Half-Life	Use
Tritium	$^{3}_{1}H$	β^{-}	12.33 years	Biochemical tracer
Carbon-14	$^{14}_{6}C$	β^{-}	5730 years	Archaeological dating
Phosphorus-32	$^{32}_{15}P$	β^{-}	14.26 days	Leukemia therapy
Potassium-40	$^{40}_{19} m K$	β^{-}	1.28×10^9 years	Geological dating
Cobalt-60	⁶⁰ 27Co	β ⁻ , γ	5.27 years	Cancer therapy
Technetium-99m*	⁹⁹ ^{<i>m</i>} ₄₃ Tc	γ	6.01 hours	Brain scans
Iodine-123	$^{123}_{53}\mathrm{I}$	γ	13.27 hours	Thyroid therapy
Uranium-235	²³⁵ 92	α, γ	$7.04 imes 10^8$ years	Nuclear reactors

^{*}The *m* in technetium-99*m* stands for *metastable*, meaning that it undergoes γ emission but does not change its mass number or atomic number.

We consider that an *iso* is 'safe' when the level of its *act* falls to the level of normal *background radiation*.

Generally it takes about 6 to 8 half-lives.

We are all exposed to *radi* all the time. About 85% of this is natural due to radioisotopes in rocks and radiation from the sun.

About 15% is man-made resulting from *med* uses and, *more controversially*, from *leakages* from *nuc power stations* and the *disposal of nuc waste*.

Using Radioisotopes

Medical examining body tissues or organs

e.g 132 I and 125 I are used to test the health of the *thy* gland

cancer treatments

e.g ⁶⁰Co is a powerful γ -emitter used to treat deep-seated *tum* ³²P is a weak β -emitter which can be applied directly to treat *sk cancer* wires of ¹⁹⁸Au can be placed inside *tum* to dose them with radiation

Industrial detecting flaws

e.g ⁶⁰Co can be used to take 'X-ray pictures' of *wel* and castings

measuring engine wear

e.g. engine/oil makers used *pist rings* with a thin layer of radioactive material on the surface to monitor wear without *disma* the engine

detecting cracks in jet engines

e.g γ -radiation from ¹⁹²Ir is used to detect *cra* in jet turbines

domestic smoke detectors

e.g. ²⁴¹Am emits α -particles that even a small amount of *smo* blocks

measuring thickness/checking contents

e.g. the thickness of *ste* sheet or the level of *be* in a can can be monitored

Scientific reaction pathways - using isotopic labelling

e.g ¹⁸O was used to determine the *mechanism* of the *esteri*

reaction

Topic 2

actual mechanism

radioactive ¹⁸O should have been part of the H₂O molecule formed

predicted mechanism

in fact, ¹⁸O remained as part of the ester molecule.

e.g 32 P was used to follow the routetaken through plants by *phos* ADP \rightarrow ATP etc

dating

e.g. ¹⁴C is produced naturally in the upper *atmo*. While alive, *pla* and *ani* have a constant ratio of ¹²C:¹⁴C. Once they die the ¹⁴C *dec*. The half-life for ¹⁴C is about 5,600 years so the age of any object made from a living organism can be *estim* by comparing it with a similar object today.

Nuclear Energy

Both the **fusion** (smashing together) and the **fission** (splitting apart) of atoms provide potential for generating large amounts of energy.

Nuclear Fission

One of the possible reactions that could take place in a *nuc* power station is:-

 ${}^{1}_{0}n$ + ${}^{235}_{92}U$ \longrightarrow \longrightarrow ${}^{140}_{54}Xe$ + + $2 \frac{1}{0} n$

A slow moving *neut* is *cap* by a *Ura* atom which then *spl* apart to produce two smaller 'daughter' atoms. The two neutrons produced can then go on to react with other atoms leading to a *chain reaction*. Ura

A mole of Uranium, g, yields as much energy as 60 tonnes of high quality coal which would also release 220 tonnes of CO_2 into the *atmos* . Nuclear power stations could replace conventional *foss fuel* power stations but....

Advantages	Diadvantages
no 'gree 'gases emitted	possibility of <i>disas</i> accident
no SO_2 to add to ' <i>ac</i> rain'	increase in ' <i>back</i> 'radiation
safer <i>min</i> uranium than <i>min</i>	problems <i>stor</i> long term waste
coal uranium reserves will last longer	slow to change output levels to respond to peaks of demand
than <i>foss fuel</i> reserves	<i>plut</i> produced may lead to
less <i>vis</i> impact than coal- or	increase in nuclear <i>wea</i>
oil-fired power stations or wind farms etc	much more <i>expe</i> to build
fewer <i>stat</i> needed	more <i>expe</i> to decommission

This is many peoples hope for the *fut*. The main *raw mat* Nuclear Fusion would be *hydr*

atoms extracted from *wat* and it would produce no *dang* $(\log t_{y_2})$ *radio* products. It would replicate one of the main reaction that powers a st

$${}^{2}_{1}H + {}^{3}_{1}H \longrightarrow + {}^{1}_{0}n$$
page 10 $National 5$

The major difficulty is bringing *nuc* together (*enormous repul*) long enough to fu together. Very *expe* devices are being tested but, so far, no-one has achieved *fus* for more than a few seconds or succeeded in producing *more ene* than was needed to achieve *fus*.

In *sta* and *neb*, *temp* of several *mill* degrees Celcius are attained and *ato* possess so much *ene* that *fus* can occur and larger *nuc* can be formed.

 $3 {}^{4}_{2}\text{He} \longrightarrow$ ${}^{12}_{6}\text{C} + {}^{4}_{2}\text{He} \longrightarrow$

In the *heaviest*, **ho** stars, even heavier can be produced. These heavier ele ele form the *core* of the *st* . Once iron is formed, too much energy is in the core and eventually the star abs will go *supernova* and *expl* . This disperses causing new suns and planets to the *ele* form. All *naturally-occuring* ele have been formed in this way over *bill* of years.

 b) A mosquito fed on a solution containing phosphorus-32 is released. Phosphorus-32 has a half-life of 14 days.

When the mosquito is recaptured 28 days later, what fraction of the phosphorus-32 will remain?

2.3 Electron Arrangement

Electron Shells

Mass -they are extremely sm and li.(About 1/2000th as heavy as a pr).

(10+)

0

18+)

Some of the elare found quite close to the nuinwhat we call the FShell. These electrons have least en

There is only room for electrons in the F Shell, (the repulsive forces between the el are too strong to allow any more).

The next group of electrons are found fuoutfrom the nucleus in what we call the SShell.These electrons have more en.

There is room for electrons in this shell. There are possible paths (*or*) that the electrons can follow.

Each *or* is able to hold electrons, but they will not '*pa up*' until there are no more *em* orbitals available. i.e. after electrons.

The TShell is even fuoutfrom the nucleus. These electronshave even more en

Again, there are **or** and room for electrons in total. We write this **electron arrangement** as:-

KHS Aug 2013

0

0

National 5

Each new row (Pe) in the *Periodic Table* represents the start of a new sh. As you move from le to ri the sh is being fi, and the elements change from me to n -metals.

The Al metals all have electron in their ou shell. The Ha allhave , while the No gases all have a fu outer shell. Elements which arein the same Gr will have the same nu of el in their ou shelland will have very similar pro.KHS Aug 2013page 14National 5

Electrons & Bonding Powers

get involved in *re* When *at* they have to physically touch, (col with), each other. This really only affects the *el* shell. Not in the *ou* an atom has in its **ou** shell is all surprisingly then, the *nu* of el important.

There are various methods for learning *For* but most involve Wri (Valency Number) which is determined by the some idea of **Bon** Po of el in the *ou* shell. nu

shell of an atom can get involved in *electrons* in the *ou* Only *un* reactions, and form **bo** with other atoms.

The No gases are very unr because they have <u>no</u> *un* electrons.

One of the *driving forces* behind *bon* will be the *advantages* that can be gained by achieving a sta ele , like the *No* gases. The arr 'easiest' way of doing this is to either:

ions by *giv* Me atoms tend to form *pos* away their outermost elec to achieve the same electron arrangement as the nearest no gas.

-metal atoms tend to form *neg* ions by gai \boldsymbol{N} extra *outermost elec* to achieve the *same electron arrangement* as the nearest *no* gas.

The size of the ch on an *ion* depends on the *num*

of electrons given away

or gained.

number on an *ion* is the same as its *val* The *ch*

number.

Identify the two elements which have similar chemical

gold

carbon

magnesium

Q5.

properties

A

B

С

D

Identify the symbol for the element which has similar chemical properties to oxygen.

The element is	Α	Mg
	В	Ν
	С	S
	D	F

Int₂

SG

Topic 2 SG

Int₂

Knowledge Met in this Topic

Stability

- Radioactive decay involves changes in the *nuclei* of atoms
- Unstable nuclei (*radioisotopes*) are transformed into more stable nuclei by the *emission* of small particles and the *release of energy*.
- The stability of nuclei depend on the *neutron: proton ratio* which can be calculated as

neutrons / protons

• As you go through the Periodic Table larger numbers of neutrons are needed and the *neutron : proton ratio increases* from 1 to 1.5.

nature

symbol

Emissions

- There are 3 main types of emissions referred to as *alpha* (α) *particles*, *beta* (β) *particles* and *gamma* (γ) *rays*
- - **beta** (β) particles

• gamma (γ) rays

5		2
mass	-	4
charge	-	positively charged
deflection	-	towards negative plate
penetration	-	low
nature	-	high energy electron
symbol	-	₋₁ ⁰ e -
mass	-	0
charge	-	negatively charged
deflection	-	towards positive plate
penetration	-	medium
nature	-	electromagnetic radiation
symbol	-	$\wedge \wedge r$
mass	-	0
charge	-	0
deflection	-	not deflected
penetration	-	high

- like a helium nucleus

- ⁴₋ He ²⁺

Nuclear Equations

• *Balanced* nuclear equations can be written involving:

neutrons	-	${}^{1}_{0}$ n
protons	-	$^{1}_{1} p$
α particles	-	4_2 He
β particles	-	$^{0}_{-1}$ e

• During nuclear reactions:

overall *mass* is conserved overall *charge in nuclei* is conserved

Radioactive Decay

- The decay of individual nuclei within a sample is *random* and is *independent of chemical or physical state*.
- *Nuclear* chemistry is not affected by the same factors as 'normal' (*electron*) chemistry such as:
 - temperature, concentration, particle size, atom or ion, physical state, etc
- The *half-life* is the time taken for the *activity* or *mass* of a radioisotope to halve
- Given the values of two of these variables, the value of the other can be *calculated*:

quantity of radioisotope, half-life, time elapsed.

Using Radioisotopes

• *Radioisotopes* are used in:

medicine	- tracers, cancer treatments, imaging etc
industry	- tracers, measuring, imaging, energy etc
science	- tracers, measuring, imaging, dating etc

- *Radioisotopes* with *long half-lives* give 'constant' readings over large time periods but can require expensive arrangements for disposal / storage.
- *Radioisotopes* with *short half-lives* should decay to 'safe' levels quickly.
- *Radioisotopes* with *low penetration* are easier to shield and can be used within a person with little risk of exposure for people coming into contact.
- *Radioisotopes* with *high penetration* are useful for imaging and treatments from outside the body, but have to be carefully screened.

Nuclear Energy

- *Nuclear fission* inolves creating unstable nuclei by neutron bombardment which then '*split*' to produce smaller '*daughter*' nuclei
- During nuclear fission, neutrons are produced which can lead to a '*chain reaction*' and, if not controlled, a nuclear explosion or meltdown.
- Nuclear fuels and fossil fuels can be compared in terms of *safety*, *pollution* and use of *finite resources*.
- Elements are created in the stars from simple elements by *nuclear fusion*.
- All naturally occuring elements, including those found in our bodies, originated in the stars.
- Nuclear fusion has the potential to be a safe, non-polluting source of energy but there are enormous engineering problems to be overcome.

Electron Shells

- Electrons are arranged in special layers (called *shells*) around each nucleus. *Electron arrangements* are given in the data booklet.
- *Electron arrangements* for the first 20 elements in the Periodic Table can be worked out on the basis of

first shell	-	maximum 2 electrons
second shell	-	maximum 8 electrons
third shell	-	maximum 8 electrons

- Larger shells are divided into *regions* called *orbitals* which can each hold a *pair* of electrons
- *Each* orbital in a shell must have one electron before any *pairing* of electrons takes place

Electrons & The Periodic Table

- Each row (*Period*) represents a new shell, and the shell is gradually filled as we move across the *period*.
- As we move across the period, *properties gradually change* from '*typically metallic*' to '*typically non-metallic*'.
- Elements in the same column (*Group*) have the *same number of outer electrons* and have *similar chemical properties*.

Electrons & Bonding

- The *number of outer electrons* determines the *bonding power* of an atom.
- Atoms can become more stable by *losing* or *gaining electrons* to form *ions*.
- The *number of outer electrons* determines the *charge on the ion* most likely to be formed from a particular atom.

CONSOLIDATION QUESTIONS

Q1. Int2 Which of the following is the electron arrangement for an alkali metal? Q3. (You may wish to use your Data Book to help) A 2, 1 A 2, 1 B 2, 2 C 2, 3 D 2, 4 Q2. a) Complete each line below by providing the correct symbol and electron arrangement for each atom. (You may wish to use your Data Book to help) What is isotope? e.g sodium atom Na 2,8,1 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom Give the b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . e.g e.g sodium ion Na * 2,8 b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . e.g e.g sodium ion Na * 2,8 oxygen atom lithium atom chlorine atom Ma * ithium atom chlorine atom Ma * 2,8 oxygen atom lithium atom A B c) What do you notice about the electron arrangements of these ions ? <th></th> <th></th> <th></th> <th></th> <th></th>					
Which of the following is the electron arrangement for an alkali metal? Xenon- What is isotope? You may wish to use your Data Book to help) A 2, 1 A 2, 2 C 2, 3 D 2, 4 What is isotope? What is isotope? a) Complete each line below by providing the correct symbol and electron arrangement for each atom. (You may wish to use your Data Book to help) What is isotope? e.g sodium atom Na 2,8,1 oxygen atom Ithium atom Q4. Give the sulphur atom magnesium atom nitrogen atom aluminium atom Q4. b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Q5. e.g sodium ion Na + 2,8 b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Q5. e.g sodium ion Na + 2,8 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom nitrogen atom aluminium atom B c) What do you notice about the electron arrangements of these ions ? D	Q1.			Int2	Q3.
(You may wish to use your Data Book to help) What is isotope? A 2, 1 B 2, 2 C 2, 3 D 2, 4 Q2. What is isotope? a) Complete each line below by providing the correct symbol and electron arrangement for each atom. (You may wish to use your Data Book to help) What is isotope? e.g sodium atom Na 2,8,1 oxygen atom lithium atom Q4. Give the sulphur atom magnesium atom nitrogen atom aluminium atom Q5. b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Q5. e.g sodium ion Na + 2,8 b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Q5. e.g sodium ion Na + 2,8 oxygen atom lithium atom A nitrogen atom aluminium atom A e.g what do you notice about the electron arrangements of these ions ? D	Which an alk	1 of the following is the ele ali metal?	ectron arrang	ement for	Xenon-144
A 2, 1 B 2, 2 C 2, 3 D 2, 4 Q2. (You may wish to use your Data Book to help) e.g sodium atom Na 2,8,1 oxygen atom (You may wish to use your Data Book to help) Q4. e.g sodium atom Na 2,8,1 oxygen atom (Chlorine atom Sulphur atom Mathematical Science (Chlorine atom) b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Give the sulphur atom b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Q5. e.g sodium ion Na + 2,8 oxygen atom Ithium atom A lithium atom Mathematical Science (Chlorine atom) Mathematical Science (Chlorine atom) sulphur atom magnesium atom A nitrogen atom B C ² which do What do you notice about the electron arrangements of these ions ? D	(You n	nay wish to use your Data Boo	ok to help)		What is the isotope?
B 2, 2 C 2, 3 D 2, 4 Q2. (You may wish to use your Data Book to help) e.g sodium atom Na 2,8,1 oxygen atom (You may wish to use your Data Book to help) Q4. e.g sodium atom Na 2,8,1 oxygen atom ithium atom chlorine atom sulphur atom nitrogen atom aluminium atom Give the b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Q5. e.g sodium ion Na + 2,8 oxygen atom lithium atom chlorine atom sulphur atom lithium atom chlorine atom Sulphur atom A magnesium atom nitrogen atom B C ² which c A B C ² oWhat do you notice about the electron arrangements of these ions ? D D	Α	2,1			A
C 2, 3 D 2, 4 Q2. What is isotope? a) Complete each line below by providing the correct symbol and electron arrangement for each atom. (You may wish to use your Data Book to help) Q4. e.g sodium atom Na 2,8,1 oxygen atom ithium atom Q4. Give the sulphur atom magnesium atom Q4. oxygen atom ithium atom Give the sulphur atom nitrogen atom aluminium atom Q5. b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Q5. e.g sodium ion Na + 2,8 oxygen atom lithium atom A aluminium atom g5. Which of a game and aluminium atom c) What do you notice about the electron arrangements of these ions ? D	В	2,2			В
D 2, 4 Q2. What is isotope? a) Complete each line below by providing the correct symbol and electron arrangement for each atom. (You may wish to use your Data Book to help) Image: Complete each line below by providing the correct symbol atom atom aluminium atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each ion. Image: Q4. b) Complete each line below by providing the correct symbol and electron arrangement for each ion. Image: Q4. b) Complete each line below by providing the correct symbol and electron arrangement for each ion. Image: Q5. e.g sodium ion Na + 2,8 oxygen atom Ithium atom Image: Q5. which correct symbol and electron arrangement for each ion. Image: Q5. e.g sodium ion Na + 2,8 oxygen atom Ithium atom Image: Q5. which correct symbol and electron arrangement for each ion. Image: Q5. chlorine atom Image: Q5. Image: Q6. g What do you notice about the electron arrangements of these ions ? Image: Q6.	С	2,3			C
Q2. What is isotope? a) Complete each line below by providing the correct symbol and electron arrangement for each atom. (You may wish to use your Data Book to help) isotope? e.g sodium atom Na 2,8,1 oxygen atom ithium atom Q4. Give the sulphur atom magnesium atom ithium atom b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Give the sulphur atom e.g sodium ion Na + 2,8 b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Whith is isotope? e.g sodium ion Na + 2,8 oxygen atom lithium atom Chlorine atom aluminium atom Ma + 2,8 oxygen atom B A nitrogen atom B B c) What do you notice about the electron arrangements of these ions ? D	D	2,4			D
 a) Complete each line below by providing the correct symbol and electron arrangement for each <i>atom</i>. (You may wish to use your Data Book to help) e.g sodium atom Na 2,8,1 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom nitrogen atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i>. e.g sodium ion Na ⁺ 2,8 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom nitrogen atom aluminium atom c) What do you notice about the electron arrangements of these ions ? 	Q2.				What is the
 (You may wish to use your Data Book to help) e.g sodium atom Na 2,8,1 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom nitrogen atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i>. e.g sodium ion Na ⁺ 2,8 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom e.g sodium ion Na ⁺ 2,8 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom chlorine atom aluminium atom c ² What do you notice about the electron arrangements of these ions ? 	<i>a</i>)	Complete each line belo symbol and electron arr	ow by provid angement fo	ing the correct r each <i>atom</i> .	A
e.g sodium atom Na 2,8,1 oxygen atom Ithium atom Q4. lithium atom chlorine atom Give the sulphur atom magnesium atom Ithium nitrogen atom aluminium atom Ithium b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . Ithium e.g sodium ion Na + 2,8 oxygen atom Ithium atom Q5. which do you notice about the electron aluminium atom A nitrogen atom B C 2 c) What do you notice about the electron arrangements of these ions ? D		(You may wish to use yo	our Data Book	to help)	В
oxygen atom Q4. lithium atom Q4. chlorine atom Give the sulphur atom magnesium atom nitrogen atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . e.g sodium ion Na + 2,8 oxygen atom Ithium atom Q5. lithium atom chlorine atom Mhich do sulphur atom magnesium atom A nitrogen atom aluminium atom C 2 c) What do you notice about the electron arrangements of these ions ? D	e.g	sodium atom	Na	2.8.1	C
lithium atom Q4. chlorine atom Give the sulphur atom magnesium atom nitrogen atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . e.g sodium ion Na + 2,8 oxygen atom Unitable Q5. lithium atom chlorine atom Mhich of aluminium atom nitrogen atom aluminium atom A g sulphur atom B aluminium atom C ² what do you notice about the electron arrangements of these ions ? D	0	oxygen atom		y - y +	D
chlorine atom Give the sulphur atom magnesium atom nitrogen atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i> . e.g sodium ion Na + 2,8 oxygen atom oxygen atom lithium atom Q5. which of aluminium atom A nitrogen atom B aluminium atom C 2 chlorine atom B aluminium atom C 2 which of aluminium atom C 2 what do you notice about the electron arrangements of these ions ? D		lithium atom			Q4.
sulphur atom magnesium atom magnesium atom nitrogen atom aluminium atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each ion. e.g sodium ion Na + 2,8 oxygen atom oxygen atom lithium atom Q5. which do you notice about the electron arrangements of these ions ? A		chlorine atom			Give the syn
magnesium atom nitrogen atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each ion. e.g sodium ion Na + 2,8 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom nitrogen atom aluminium atom c) What do you notice about the electron arrangements of these ions ?		sulphur atom			al
nitrogen atom aluminium atom b) Complete each line below by providing the correct symbol and electron arrangement for each ion. e.g sodium ion Na + 2,8 oxygen atom Ithium atom lithium atom chlorine atom sulphur atom q5. magnesium atom A aluminium atom C ² c) What do you notice about the electron arrangements of these ions ?		magnesium atom			be
aluminium atom Image: solution in the second support of the second support of the second support of the second support atom Image: solution in the second support of the second support of the second support of the second support in the second secon		nitrogen atom			ne
 b) Complete each line below by providing the correct symbol and electron arrangement for each <i>ion</i>. e.g sodium ion Na + 2,8 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom nitrogen atom aluminium atom c) What do you notice about the electron arrangements of these ions ? 		aluminium atom			
e.g sodium ion Na + 2,8 oxygen atom lithium atom chlorine atom sulphur atom magnesium atom nitrogen atom aluminium atom c) What do you notice about the electron arrangements of these ions ?	b)	Complete each line belo symbol and electron arr	ow by provid angement fo	ing the correct r each <i>ion</i> .	ele
oxygen atomlithium atomchlorine atomsulphur atommagnesium atomnitrogen atomaluminium atomc)What do you notice about the electron arrangements of these ions ?D	e.g	sodium ion	Na +	2,8	W
lithium atomQ5.chlorine atomWhich ofsulphur atomAmagnesium atomAnitrogen atomBaluminium atomC 2c)What do you notice about the electron arrangements of these ions ?D		oxygen atom			
chlorine atomQ5.sulphur atomWhich ofmagnesium atomAnitrogen atomBaluminium atomC 2c)What do you notice about the electron arrangements of these ions ?D		lithium atom			
sulphur atom which of sulphur atom A magnesium atom B aluminium atom C ² c) What do you notice about the electron arrangements of these ions ?		chlorine atom			Q5.
magnesium atomAnitrogen atomBaluminium atomC 2c)What do you notice about the electron arrangements of these ions ?D		sulphur atom			Which of the
nitrogen atom aluminium atom c) What do you notice about the electron arrangements of these ions ? D		magnesium atom			A 40
aluminium atomCc)What do you notice about the electron arrangements of these ions ?D		nitrogen atom			R 2
c)What do you notice about the electron arrangements of these ions ?C 2 D		aluminium atom			
arrangements of these ions ? D	c)	What do you notice abo	ut the electri	on	$C_{92}^{235}U$
	.,	arrangements of these id	ons?	л	\mathbf{D}^{-1}

Topic 2

DNS		A
Q3.		Н
Xenon-144 is a rad	lioisotope.	
What is the proton sotope?	to neutron ratio in an atom o	of this
А	0.38	
В	1.00	
С	1.34	
D	2.67	
What is the neutron sotope?	n to proton ratio in an atom o	of this
А	0.38	
В	0.76	
С	1.00	
D	1.34	
04		
<u>Q</u> 4.	1 6 1	H
Jive the symbol fo	or each of these particles	
alpha p	particle	
beta pa	rticle	
neutror	1	
proton		
electro	n	
Which tw	o particles are the same ?	
Q5.		Н

Which of the following equations represents nuclear fusion ?

$$\mathbf{A} \quad {}^{40}_{19} \mathbf{K} \ + \ {}^{0}_{-1} \mathbf{e} \ \longrightarrow \ {}^{40}_{18} \mathbf{Ar}$$
$$\mathbf{B} \quad {}^{2}_{1} \mathbf{H} \ + \ {}^{3}_{1} \mathbf{H} \ \longrightarrow \ {}^{4}_{2} \mathbf{He} \ + \ {}^{1}_{0} \mathbf{n}$$
$$\mathbf{C} \quad {}^{235}_{92} \mathbf{U} \ + \ {}^{0}_{0} \mathbf{n} \ \longrightarrow \ {}^{90}_{38} \mathbf{Sr} \ + \ {}^{144}_{54} \mathbf{Xe} \ + \ 2 \ {}^{1}_{0} \mathbf{n}$$
$$\mathbf{D} \quad {}^{14}_{7} \mathbf{N} \ + \ {}^{1}_{0} \mathbf{n} \ \longrightarrow \ {}^{14}_{6} \mathbf{C} \ + \ {}^{1}_{1} \mathbf{p}$$

CONSOLIDATION QUESTIONS

B

Int₂

Η

Q1.

The table shows information about an ion.

Particle	Number
protons	16
neutrons	17
electrons	18

The charge on the ion is

Α	- 2
В	- 1
С	+ 1
D	+ 2

Q2.

Int2

Which of the following particles contains a different number of electrons from the others?

Α	Cl -
В	O ²⁻
С	Ne
D	Na ⁺

Q3.

Int2/H

Atoms and ions contain particles called protons, neutrons and electrons.

The nuclide notation of a phosphide ion is shown.

$^{32}_{15}{ m P}$ ³⁻

a) Complete the table to show the number of each type of particle in this phosphide ion.

Particle	Number
electron	
proton	
neutron	

b) Phosphorus-32 decays by beta-emission. Write the nuclear equation for the decay of phosphorus-32.

Q4.

Int₂

In which of the following compounds do *both* ions have the same number of electrons as neon?

- A calcium fluoride
- **B** magnesium chloride
- **C** sodium oxide
- **D** aluminium bromide

Q5.

The chart was obtained from a 24-day old sample of an α -emitting radioisotope of Radon.

- *a*) What is the half-life of the isotope?
 - A 2 days
 - **B** 4 days
 - C 8 days
 - **D** 12 days

b)

$$\overset{222}{_{86}}\text{Rn} \longrightarrow {}^{a}_{b}X + {}^{4}_{2}\text{He}$$

Identify element \mathbf{X} and the values of a and b.

c) Radon-222 can be produced from another radioisotope after *six* α *-emissions* amd *two* β *-emissions*. Identify the starting radiosisotope.