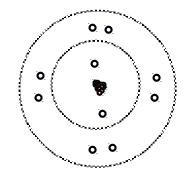
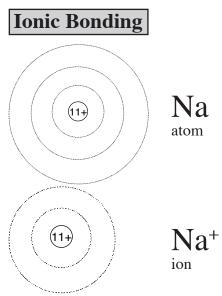

National 5 Chemistry

Unit 1:

Chemical Changes & Structure

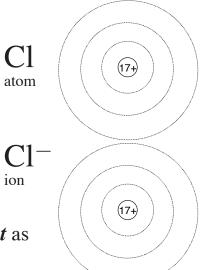

Student:


Bonding & Bonding Structures

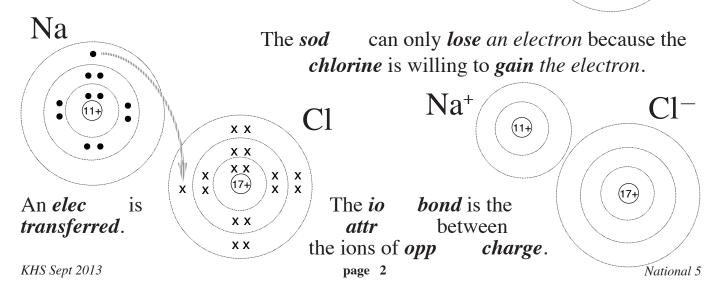
Topics	Sections			Done	Checked
_	1.	Ionic Bonding			
3.1	2.	Covalent Bonding			1
	3.	Molecular Shapes			
Bonding	4.	Metallic Bonding			1
		Self -Check Questions 1 - 8	Score: /		
	1.	Single Atoms			
3.2	2.	Covalent Molecules			
	3.	Covalent Networks			
Bonding	4.	Ionic Networks			
Structures	5.	Metallic Networks			
		Self -Check Questions 1 - 8	Score: /		
3.3	1.	Single Atoms			
	2.	Covalent Molecular			
Melting	3.	Networks			
Points		Self -Check Questions 1 - 8	Score: /		
	1.	Single Atoms			
3.4	2.	Covalent Molecular			
Conductivity	3.	Networks			
Conductivity	4.	Summary			
		Self -Check Questions 1 - 8	Score: /		
3.5	1.	Unequal Sharing			
	2.	Water Molecules			1
Polarity &	2.	Solubility			1
Solubility		Self -Check Questions 1 - 8	Score: /		
		Consolidation A	Score: /		
Consolidation		Consolidation B	Score: /		1
Work		Consolidation C	Score: /		1
,, or k		Consolidation D	Score: /		1
End-off-Topic Assessment	,	Score:	Grade:		

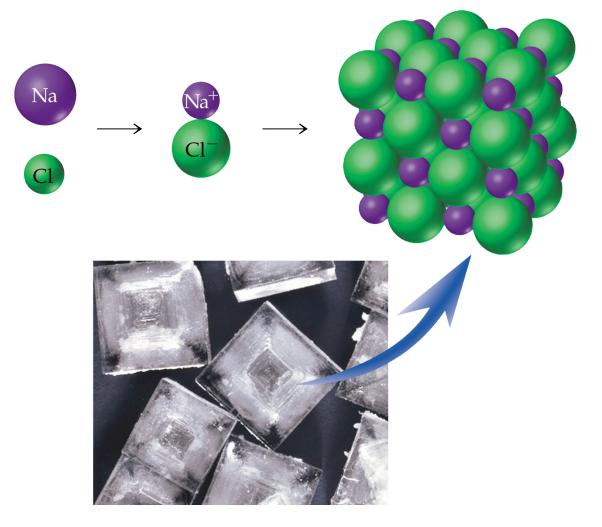
3.1 Bonding *No* gases like *ne* are unusual because they do *not* seem to need to form bonds. They do *not* react. Their *val* are zero.

The noble gases also have a *full ou shell* and this seems to be a *very stable elec arrangement*.


Sod is element and very close to *ne* in the *Periodic Table*.

Sod atoms cannot change the *number of pro* in their nuclei, but they can *lose one electron* to have the same *stable electron arrangement* as a *ne* atom.


The *sod ion* formed has the *same nucleus* as the sodium atom, but has the *same elec arrangement* as *ne* ; the nearest noble gas.

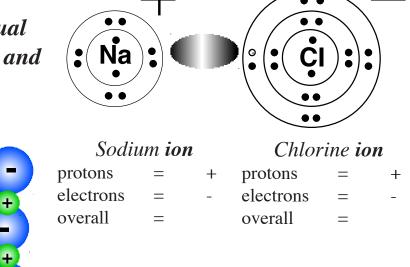

Chl is element and very close to *ar* in the *Periodic Table*.

Chlatoms also cannot change the number ofproin their nuclei, but they can gain 1 electronto have the same stable elecarrangement as anaratom.

The *chl ion* formed has the *same nucleus* as the chlorine atom, but has the *same electron arrangement* as *ar* ; the nearest noble gas.

The Ionic Bond is the mutual attraction between positive and negative ions.

+


+

+

-

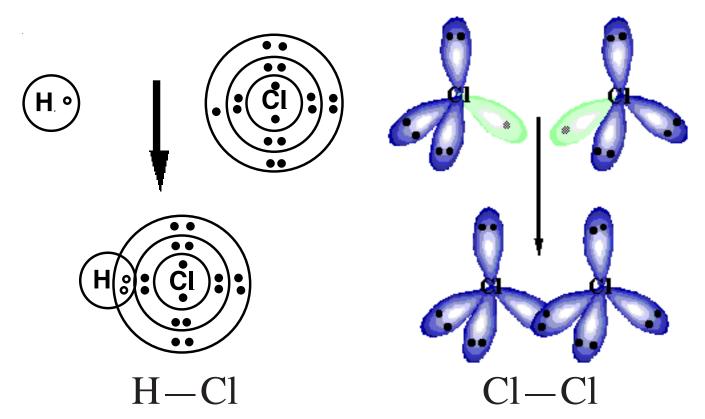
+

+

Na⁺ Cl⁻

Though *1 sodium* atom will give *1 electron* to *1 chlorine* atom and the formula for sodium chloride will be NaCl, each Na⁺ ion will attract several Cl⁻ ions and vice versa, hence a *net* structure.

÷

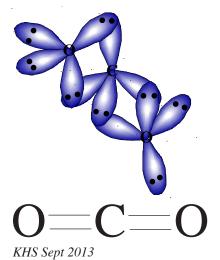

+

Covalent Bonding

In *cov compounds*, both the *ele* involved are *usually n -metal*.

N -metal atoms prefer to ga electrons.

For *both* atoms to *ga extra electrons*, the atoms have to *share electrons*.

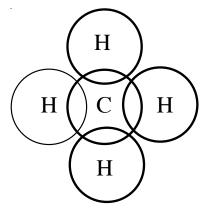


Atoms oveshells in order tosha elec.

Both atoms achieve a stable electron arrangement (a *full outer shell*).

Half-filled orb can ove to sha elec .

The Covalent Bond is the force of attraction between the two positive nuclei and the shared pair of electrons.



Each shared pair of electrons is a *cov bond*. When necessary atoms can share more than one pair and form *do* or even *tri* covalent bonds.

page 4

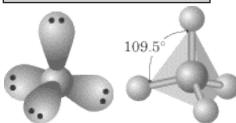
Chemical Changes & Structure

A *mol* of *methane* has *fo hydrogen* atoms joined to *one car* atom.

Dots and crosses can be used to stand for the *outermost elec* in both types of atoms.

All the electrons are now *paired* up.

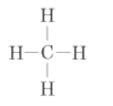
In *cov compounds* atoms join together by *sha electrons*.


Only the *ou electrons* are involved.

Sha allows odd electrons from different atoms to *pair up*.

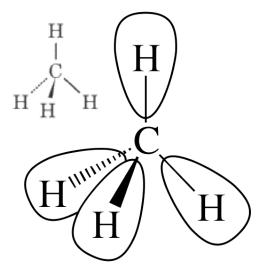
Cov compounds usually only involves *n -metal* atoms.

The *sha pair of electrons* hold the atoms together.


Molecular Shapes

The shof some simple molneed tobe known and understood. Their shapes are allbased on the need for the 4 orb, found inthe outer shell of many atoms, to remain as farapart as possible to minimise rep. This3-dimensional arrangement is tet.

tetrahedral tetrahedral

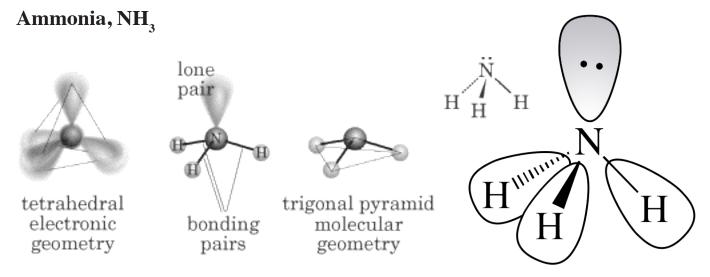

Methane, CH₄

Carbon atoms have sinelein all 4orbavailable to form bonding pairs.

The 4 orbwill be arranged tetand with 4 hydrogen atoms overlapping witheach orbital, the molecular shape is alsodescribed as tetKHS Sept 2013page 5

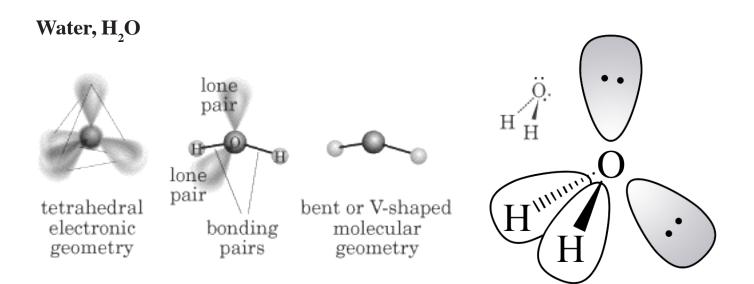
Η

Ν


Η

0

Η


Η

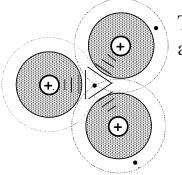
Η

Nitrogen atoms have *sin ele* in 3 of the 4 *orb* available to form *bonding pairs*. The 4th orbital is full - these form a *lone pair* or *non-bonding pair*.

The *4 orbitals* will be *arranged tet* but with *only 3 hy* atoms overlapping with *3 orbitals*, the *molecular shape* will be different and is described as *trigonal pyramidal*.

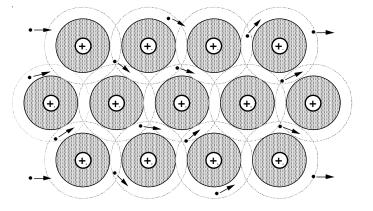

Oxygen atoms have *sin ele* in 2 *of the 4 orbitals* available to form *bonding pairs*. The other 2 orbitals are full - these form *lone pairs* or *non-bonding pairs*.

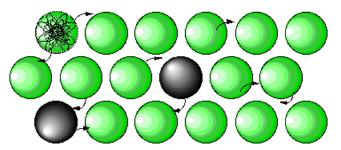
The *4 orbitals will be arranged tet* and with *only 2 hy atoms* overlapping with 2 orbitals, the *molecular shape* will be different and is described as *bent* or *v-shaped*.


Metallic Bonding

Here, *all* the atoms want to *lo ele* but *none* are prepared to *ga ele*. At first sight there is no way that this can happen.

However, the next best thing is to *temporarily* '*lose*' the *outer electron(s)* by allowing them to *drift freely* between all the separate metal atoms.

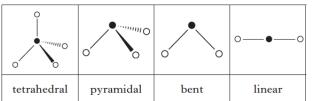

This results in *temporary metal 'ions'* forming which *immediately* attract an electron back to *reform the atom*.



The outer electrons end up 'belonging' to more than one atom;

the metal atoms are bonded together when they attract the same electron at the same time.


A metallic structure can be described as a regular arrangement (*net* or *latt*) of *pos* metal ions held together by a 'sea' of *constantly moving* **neg** electrons. The outer electrons are said to be '*del* '.



Since *all* metal atoms bond in this way, introducing atoms of a different metal does not disturb the structure at all. This is why *mix* of metals (*all*) are usually very stable and would be very difficult to separate again.

Q1.	manizes es paracrara		In	nt2	Q6
	e following pairs of	elements cor	nbine to form	n	The
an ionic con	npound?				
Α	Lead and fluor	rine			
В	Sulphur and o	xygen			
С	Carbon and ni	-			t
D	Phosphorus ar	nd chlorine			Pho
Q2.			S	SG	forn like
Identify the	covalent compound				
Α	zinc chloride				
В	magnesium su	-			
С	lead carbonate				
D	hydrogen sulp	hide			
Q3.			In	nt2	Q7
Metallic bo	nds are due to				Carl
Α	pairs of electrons b between atoms	eing shared	equally		as h a)
В	pairs of electrons b between atoms	eing shared u	unequally		
С	the attraction of op for each other	positely char	rged ions		
D	the attraction of po for delocalised elec		ged ions		
Q4.			In	nt2	
	n element form ions an electron arrangem		positive		b)
The element		ient of 2,0.			1
A	fluorine				
B	lithium				
D C	sodium				
D	neon				
Q5.			Ir	nt2	
-	nows information abo	out an <i>ion</i> .			
		Particle	Number	T I	
		protons	19	†	c)
		neutrons	20	+	
		electrons	18	∤ ┃	
The charge	on the ion is				
Α	1+				
В	1-				
D					
C	2+				

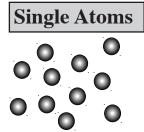
Phosphine is a compound of phosphorus and hydrogen. The formula is PH₃. The shape of a molecule of phosphine is ikely to be

Α	tetrahedral
В	pyramidal
С	bent
D	linear

Q7.

Carbon forms many compounds with other elements such s hydrogen.

t) Draw a diagram to show how the outer electrons are arranged in a molecule of methane, CH_4 .

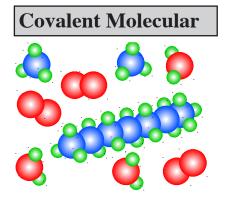

b) Draw a diagram to show the *shape* of a molecule of methane, CH_4 .

) Identify the *two* elements which react together to form a molecule with the same shape as a methane molecule.

Α	Η
B	Ν
С	Si
D	Al
Ε	Mg
F	0

Int2

Bonding Structures 3.2


°C, there are only really At room tem , about substances that we consider as having *sin* at structure sometimes referred to as *mon*

These are the *No* Gases: He. and Xe

attractions between the atoms so have very low They have *extremely* we den - used in **ba** and would *distort your* vo *box*. However, as the so, by the time we reach Xenon, it is atoms get **bi** , the att inc dense enough to 'pour' and allow an *al* foil boat to float.

If *electrically 'excited'*, these atoms *release li* with making them suitable for *strip* characteristic *co* lights and ad signs.

This is undoubtedly the *largest* and most *diverse* grouping.

Though they can have *extremely* we att between the molecules and form very low density gases - they can also have st enough attractions to form *liquids* and *solids* as well.

Whilst most are *com* , there are a reasonable number of *ele* with a structure. For example; mol cov

Covalent Molecular Elements	Covalent Molecular Compounds
KHS Sept 2013	nage 9 National 5

Chemical Changes & Structure

Covalent Network

Diamond

In this form each *ca* to form 4 bo el atoms.

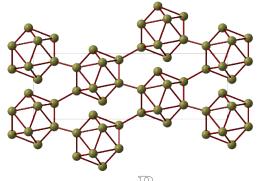
By contrast, this is a much smaller group and you are only likely to meet 6 examples.

atom uses *all* of its different *ca* to

can be described in two ways: it is The *pat* called *tetrahedral* because the atoms lie ca of a *pyr* or *tetetrahedron*. but at the *cor* you could also call it *hexagonal* as there are *ri* carbons. of

Graphite

In this form each *ca* el to form 3 bo atoms.


atom uses *only* of its to different *ca*

This produces *fl* sheets of ca atoms joined in . The *fou* electrons are *free* ri of **6**. *hex within* the *sh* and produce very weak to mo *between* the sheets. att

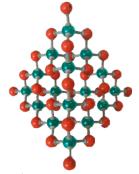
As well as *carbon*, there are two other *ele* structure -

that have a *cov*

net

Boron

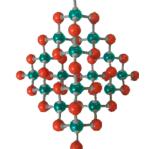
that have a *cov*


and

net

Sillicom

structure -

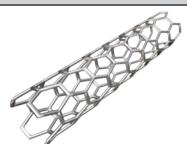

There are two main *com*

Sillicon Dioxide

Sillicom Carbidle

National 5

Ionic Network

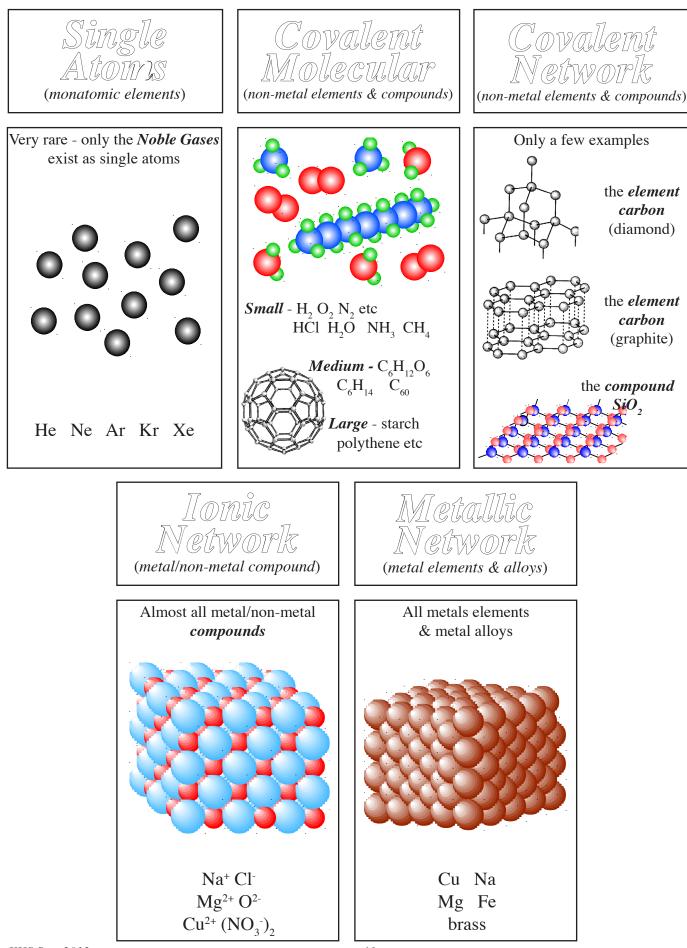

to	the normal 'rule of thur	<i>nb</i> ';
metal / non-metal	Ionic Compound	• Ionic Network
Na	Na ⁺ Cl ⁻	
Cl Examples include:-	Formula	Name
	$Cu^{2+} SO_4^{2-}$	co (II) sul
	$(K^{+})_{2}CO_{3}^{2}(s)$	pot car
	$Ni^{2+}(I^{-})_{2(s)}$	ni (II) io
	Na ⁺ Cl ⁻ _(s)	so ch
	$(K^{+})_{2}O^{2-}(s)$	pot ox
However, there are <i>io</i>	$Mg^{2+}(I^{-})_{2(s)}$	mag io
<i>net</i> which do not contain any metal ions	$NH_{4}^{+}NO_{3(s)}^{-}$	amm ni
and <i>io com</i> that <i>only exist in solutions</i> so		
don't form networks	$H^+ Cl_{(aq)}^-$	hy acid

Subtle differences in the *arrangements of ions* with different *Io Net* need not concern us.

Our '*rule of thumb*' works best with me well over to the le (in *Periodic Table*) and with n -me well over to the ri.

In the end, it is the properties that will confirm structure, not a 'rule of thumb'.

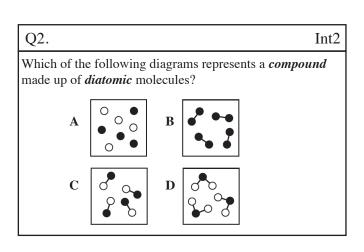
Metallic Network

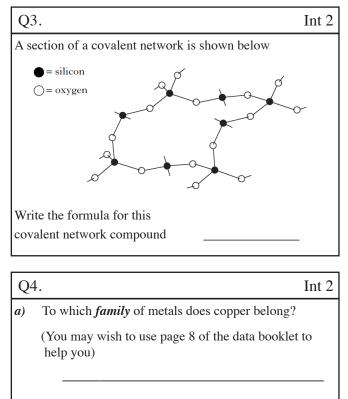


MetNetare also quite straightforward,with little difference between metal eleandmixof metals called all.

Though they have many *pro* in common there are enough *diff* to ensure that metals have a *wide variety of uses*.

Name	Elements	Properties	Uses
Mer	Hg	liquid (low Mpt) very dense poisonous	ther bar smoothing felt (hats)
Gold		melts (low MPt) easily shaped (soft) corrosion resistant	co je etc
Ти	W	hard heavy very high BPt	fil in light bulbs
Steel (alloy)	Fe , , ,	corrosion resistant unreactive strong	various types of st steel
Alkali Metals	, Na ,	very reactive low MPt low density	having fun at school!
Nitinol (alloy)	,	shape memory superelasticity	arterial st artificial ten self-ad clothing

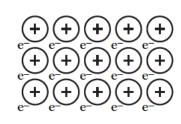

SUMMARY



D

7

Q1.		Int 2		
An element, X	, has the following properties.			
	e up of molecules. act with other elements.			
Element, X , is	likely to be in group			
Α	0			
B 1				
C	2			



Copper can be used to make other metals such as **b**) brass and bronze.

> What term is used to describe metals such as brass and *bronze*?

Int 2 Which of the following diagrams could be used to represent the structure of sodium chloride?

Q6.

Q5.

A

B

С

D

The element carbon can exist in the form of diamond. The structure of diamond is shown in the diagram.

a) Name the type of *bonding* and *structure* present in diamond.

Int 2

3.3 Melting Points

To be of any value our Bonding Theory must be able to explain the properties observed for a substance.

MelPoint tells us the tempat which a substance changes state fromso \Leftrightarrow liqandBoiPoint the tempat which it changes fromliq \Leftrightarrow gas.

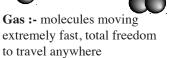
Both these changes in state will probably involve a change in *stru* but may also involve the breaking of *bo*.

Single Atoms

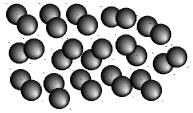
Element	Mass	Mpt (°C)	Bpt (°C)
He			
Ne			
		-189	-186
Kr			
		-112	-107

Gas :- atoms moving extremely fast, total freedom to travel anywhere

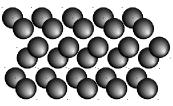
Liquid :- atoms moving faster, free to change position within body of liquid


> Solid :- atoms vibrate slowly in fixed position

Conclusion: The *no* gases have *extremely low melting and* boiling points :- are all gases at room temperature.


Explanation:Since there are no formal bonds between atoms at all, it
requires very little en to move them fa and
fur apart. Only very weak attractions.

Covalent Molecular

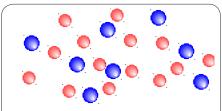


Liquid :- molecules moving faster, free to change position within body of liquid page 15

Solid :-molecules vibrate slowly in fixed position

	Elements					
Name	Bromine ²⁵⁰	Hydrogen ²⁵⁰	Iodine 250	Oxygen 250		
Formula	Br_{2}^{200-}	200-	200-	200-		
Molecule		100-	100-	100		
Melting Pt (°C)	-7 ^{Room T} -50-	Room T 0- -50-	Room T 0- -50-	Room 7		
Boiling Pt (°C)	59 ⁻¹⁰⁰ -150-	-100-	-100-	-100 -150		
State at room T	liquid	-200-	-200	-200 -250		
		Compound	5			
Name	Ammonia 250-	Ethanol 250	Methane ²⁵⁰	Water 250		
Formula	NH3 ²⁰⁰⁻	C ₂ H ₅ OH ²⁰⁰	200	200-		
Molecule	100-		100	100-		
Melting Pt (°C)	-78 ^{°00} -50-	Room T 0- -50-	Room T 0- -50-	Room T 0- -50-		
Boiling Pt (°C)	-33 ⁻¹⁰⁰	-100 -150	-100 -150	- 100		
State at room T	 gas	-200	-200	-200-		

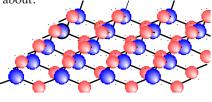
Conclusion: Cov , depending on *ma* , are *ga* or *liq* mol are usually *easily melted* (*Low Mp*t) mostly. Any *sol*

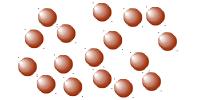

Explanation: Since there is no need to actually break the strong bonds within the molecule and forces between molecules are usually weak, it requires very little en to move them *fas* and fur apart.

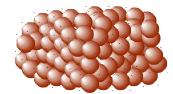
Networks

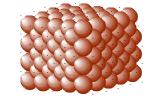
• •	4000	4000	magnesium 4000	potassium 4000
Name	Silicon	Copper	chloride	iodide
	3600	3600-	3600	3600-
Formula	3200-	3200-	3200	3200-
	Covalent ²⁸⁰⁰	2800	2800	2800-
Structure	Network ²⁴⁰⁰	2400-	2400	2400
	2000-	2000-	2000-	2000-
Melting Pt (°C)	1410	1600-	1600-	1600-
р.ч.		1200-	1200	1200-
Boiling Pt (°C)	2355 800	800-	800	800
	400-	400-	400	400-
State at room T	solid Room TO	Room TO	Room TO	Room T ()

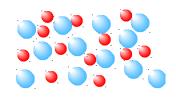
Conclusion:

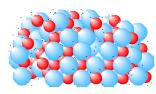

All *net* , except the metal *mer* , are *sol* at room temperature. Most have very high Mpt and Bpts.

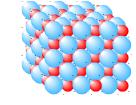

Gas :- all the remaining covalent bonds are broken resulting in individual atoms with total freedom.


Liquid :- the network gets broken up into smaller pieces which can move about.


Solid :-many strong covalent bonds hold the atoms firmly in place.


Gas :- all the remaining metallic bonds are broken resulting in individual atoms with total freedom.


Liquid :- the network gets broken up into smaller pieces which can move about.

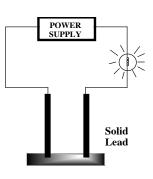

Solid :-many strong metallic bonds hold the atoms firmly in place.

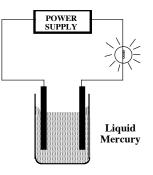
Gas :- all the remaining ionic bonds are broken resulting in individual ions with total freedom.

Liquid :- the network gets broken up into smaller pieces which can move about.

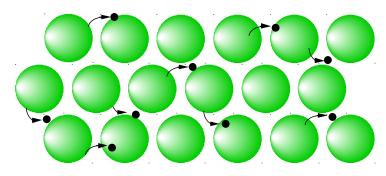
Solid :-many strong ionic bonds hold the ions firmly in place.

Explanation: Since there *is* a need to *br* between the the str bo , it requires lar particles making up the net amounts of to move them *fas* and *fur* apart. en page 17


Conductivity 3.4


Metallic Network

Name	Element or Alloy	State	Appearance	Conducts?
Copper				
Duraluminum				
Mercury				
Solder				
Magnesium				
Zinc				

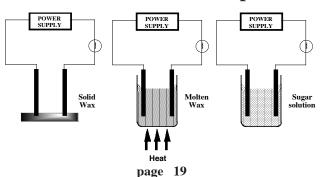

Conclusion: All metals are good *con*

when *sol* and when *liq*

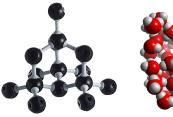
Explanation: As previously seen, the metallic bond has *del* electrons making metals ideal as con

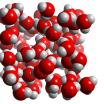
(push) is applied across the metal, by a *bat* When a *vol* or power supply, all the *del* move in the same direction; attracted towards the ele end of the battery. pos KHS Sept 2013 National 5

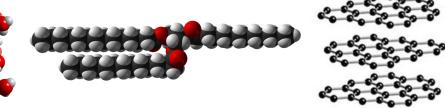
An electric **cur** is simply a flow of **neg** charged **elec**, and metals complete the circuit by allowing a **cur** to flow easily through them. The metal is completely unchanged and when the voltage is switched off the electrons will revert to drifting freely in all directions throughout the metal.


In fact, <u>all</u> parts of an electric circuit; bulb, leads, crocodile clips etc, will be made of **me** and are just a reservoir of **del elec** which the battery forces to move in a particular direction.

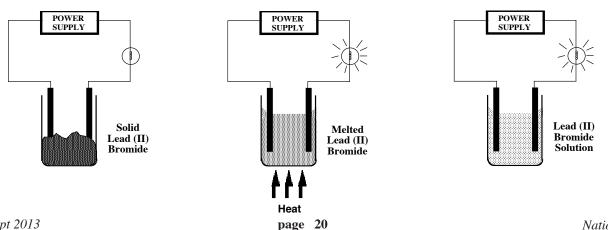
The **bat** is like an 'electron pump', that pulls electrons in at the **pos** terminal and pumps them out at the **neg** terminal.


Covalent Network & Molecular

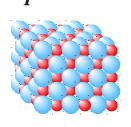

Name	Network or Molecule	Element or Compound	State	Appearance	Conducts?
Silicon					
Sulphur					
Wax					
Graphite					
Water					
Ethanol					
Carbon Dioxide					


Conclusion: All Covalent Networks and Covalent Molecules are non - con when sol , liq or in solution.

Explanation:Once a covbond forms, the sheleare fixedin place and will not be available to move between electrodesto produce an elcur

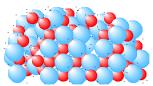

Exception: In the *gra* are being used for the *cov* is *del* - and *gra* is *electricity*.

In the graform of carbon, only 3 of the 4 eleor the covbonds. The 4th electron is free to move - itand grais similar to a metal in that it can con

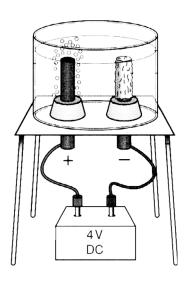

Ionic Network

Name	State	Formula	Conducts?
sodium chloride	solid	$Na^+ Cl_{(s)}^-$	
lead bromide	liquid	$Pb^{2+}(Br^{-})_{2(l)}$	
copper (II) sulphate	solid	$Cu^{2+}(Cl^{-})_{2(s)}$	
copper (II) sulphate	solution	$Cu^{2+}(Cl^{-})_{2(aq)}$	
potassium iodide	solution	K ⁺ I ⁻ _(aq)	

Conclusion: Ionic networks *cannot* act as conductors when sol, but are good *con* if melted to form *liq* or if dissolved in water to make a sol.



Topic 3


Explanation:Once formed, *io* hold onto their *elec*very stronglyindeed, so there are *never* any *delelefree to*move through an ionic solidmove*free to*

However, when *liq* or in *sol*, the individual *ions are free to move* and, being *cha*, will move towards the electrode of *opp* charge.

It appears that *mov ion*s are able, in some way, to *com the cir* .

Solution	Formula	Reaction at Cathode (negative electrode)	Reaction at Anode (positive electrode)
copper (II) chloride	$Cu^{2+}(Cl^{-})_{2 (aq)}$		
zinc iodide	$Zn^{2+}(I^{-})_{2 (aq)}$		

Iocomare the only compthat canconelectricity but they are chemchangedby the process.

Meelements form positively charged ions by loselecand are always attrtowards thenegelectrode.

N -metal elements form negatively charged ions bygainelecand are always attrtowards theposelectrode.

Eleflow through metal wires to the Cat(negelectrode). Theseeleare effectively removed by meions which are converted back intoatin the process.

Meanwhile eleappear at the An(poselectrode) as n-meions lose electrons and are converted back into at. These eleflowback to the battery through the wire. It is as if electrons flow round the circuitas normal but, in reality, only ions move through the solution - not electrons.KHS Sept 2013National 5

Electrolysis - is the name given to the process of *splitting apart* an *ionic compound* using *electricity*.

Electrolytes - are *chemicals* that can be used to *complete an electrical circuit* - effectively *ionic solutions*.

Electrolytes (ionic solutions) play a number of important roles in maintaining various processes within the body.

During sport, for example, electrolytes are lost through sweating and must be regularly topped up to prevent a deterioration in performance - particularly 'bad decision making' late in games. Sportspeople now try and 'top up' electrolytes during games.

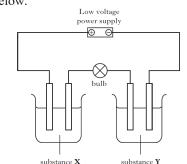
Many iocomhave characteristic coldue to the presence ofparticular ions:

Colourless ions	Coloured ion name	Coloured ion formula	Colour observed
		Cu ²⁺	
		Ni ²⁺	
	dichromate		
	chromate		
	iron (II)		
		Fe ³⁺	
		MnO ₄	
	cobalt (II)		

Compounds containing *Tran*

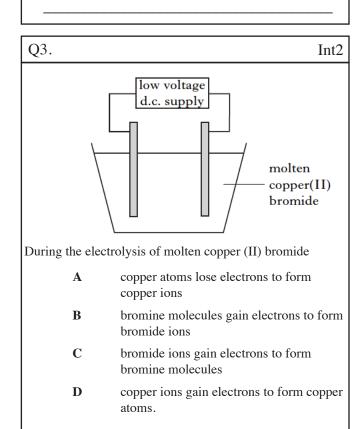
Metal ions are usually coloured.

Chemical Changes & Structure


Chemical Chang	ges & Suriicillite		Торіс 3
MCAANIGC NCANOFK (metal elements & alloys)	All metal/non-metal compounds	Conductivity Solid - Yes Liquid - Yes Solution - insoluble	Melting / Boiling MPt - high to very high BPt - high to very high All Solids (except Hg)
IOMŮC NCHWOPK (metal/non-metal compounds)	All metal/non-metal compounds Mg ²⁺ O ²⁻ Cu ²⁺ (NO ₃) ₂	Conductivity Solid - NO Molten - Yes Solution - Yes * * if soluble (Data Book)	Melting / Boiling MPt - extremely high BPt - extremely high All Solids
COVALEME NCKWOFK (non-metal elements & compounds)	Only 3 examples	Conductivity Solid - NO * Liquid - NO Solution - NO * except for graphite	Melting / Boiling MPt - extremely high BPt - extremely high All Solids
COVAUENT MOVECULAT (non-metal elements & compounds)	Small - H ₂ O ₂ N ₂ etc H ₁₄ C ₆ C ₆ H ₁₄ C ₆ polythene etc	Conductivity Solid - NO Liquid - NO Solution - NO	Melting / Boiling MPt - very low BPt - very low Gases, Liquids, Solids
SUMSUC SUMSUC AUOIM (monatomic elements)	Very rare - only the Noble Gases exist as single atoms He Ne Ar Kr Xe	Conductivity Solid - NO Liquid - NO Solution - NO	Melting / BoilingMPt - extremely lowBPt - extremely lowAll Gases

Q1.	Int2			
Solid ionic compounds do not conduct electricity because				
A	the ions are not free to move			
В	the electrons are not free to move			
C	solid substances never conduct electricity			
1				

D there are no charged particles in ionic compounds


Q2.

Several conductivity experiments were carried out using the apparatus below.

Experiment	Substance X	Substance Y
А	glucose solution	sodium chloride solution
В	copper nitrate solution	solid potassium nitrate
С	molten tin	liquid mercury
D	potassium sulphate solution	liquid hexane
Е	lithium chloride solution	molten nickel bromide

Identify the two experiments in which the bulb would light.

- SC
- The table contains information about some substances.

Substance	Melting point/°C	Boiling point/°C	Conducts as a solid	Conducts as a liquid
А	-7	59	no	no
В	1492	2897	yes	yes
С	1407	2357	no	no
D	606	1305	no	yes
Е	-39	357	yes	yes
F	-78	-33	no	no

a) Identify the substance which is a gas at 0 °C.

b) Identify the *two* substances which exist as molecules.

Q5.

SC

O4.

Int2

Int 2

Glass is made from the chemical silica, SiO_2 , which is covalently bonded and has a melting point of 1700 °C

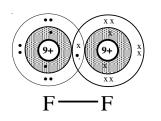
Carbon dioxide, CO_2 , is also covalently bonded but has a melting point of -78 °C.

- *a*) What does the melting point of silica suggest about its *structure*?
- *b*) What does the melting point of carbon dioxide suggest about its *structure*?

Q6.

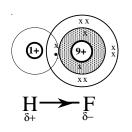
The properties of a substance depend on its type of bonding and structure.

Here are four types of bonding and structure.


Discrete covalent Covalent Ionic Metallic molecular network lattice lattice			Ionic lattice	Metallic lattice
---	--	--	------------------	---------------------

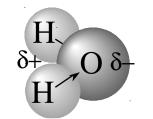
- *a*) Which type of bonding structure is missing?
- *b*) Complete the table to match up each type of bonding and structure with its properties.

Bonding and structure type	Properties
	do not conduct electricity and have high melting points
	have high melting points and conduct electricity when liquid but not when solid
	conduct electricity when solid and have a wide range of melting point
	do not conduct electricity and have low melting points


3.5 Polarity & Solubility

Unequal Sharing

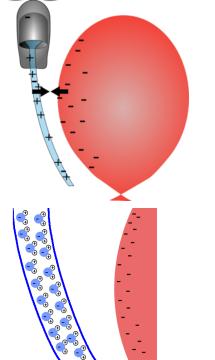
In a *mol* like F_2 , both atoms are *exactly the sa*. They have *equ attraction* for the *bonding pair* of *elec*.


The *elec* are *equ sha*. This is a *pure cov* bond.

A fluoatom has a strattraction for electhana hydratom, The bonding pair is pulled cloto thefluo.

The *fluorine* becomes *sligh neg* $(\delta -)$, while the *hydrogen* becomes *sligh pos* $(\delta +)$. This is a *polar cov* bond.

Water Molecules

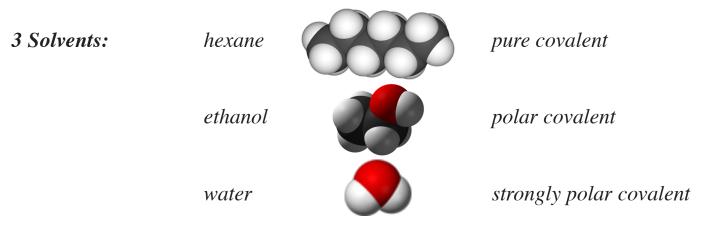


A wa

It is *pol*, because the ox atom (8 *pro*) can attract electrons more strongly than the hy atoms

molecule is a good example of a *pol molecule*.

(*1 pro*), making the O–H bonds *pol cov*

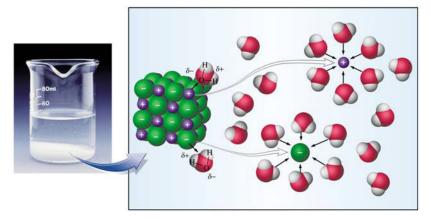


Importantly, the *shape* of the water molecule means that *one side* has a *sli neg charge* while the *other side* is *sli pos*. This makes water a *polar molecule*.

The wat molwill flip round so that theirposside is closer to the negchargedballoon. This will make the attevenstr, causing the stream of water to deflecttowthe balloon.

Solubility There is a '*rule of thumb*' in *chem* '*like dissolves like*'.

In other words, *chemicals* (*sol*) will dissolve in *liquids* (*sol*) that are *very similar* to themselves in terms of the kind of *att* that exist between them.


Solute	Hexane (pure)	Ethanol (polar)	Water (very polar)
Wax (pure covalent solid)			
Glucose (polar covalent solid)			
Bromoethane (polar covalent liquid)			
White Spirit (pure covalent liquid)			
Copper (II) sulphate (ionic solid)			

Predictably, *pure cov* solutes tend to only dissolve in *pure cov* sol .

Polar covsolutes can dissolve in any of the solvents - it will depend onhow strongly pothey are.

The attset up by water molecules can be strong enough to overcomethe ioattin certain iocomcausing them to break up anddiss.

that states that

Individually, the polar water attractions are not as strong as the ionic attractions ...

... but several water molecules will surround each ion and can succeed in pulling it away from the Ionic Network causing it to dissolve.

'Theoretical' Chemistry can provide us with rules which allow us to predict the properties of a substance if we know it's bonding and structure.

Bonding & Structure \implies Properties

However, we are a Practical subject for good reason. In reality, it is the properties of a substance that often provide us with the information needed to predict it's bonding and structure

Properties	\Rightarrow	Bonding & Structure
For example, if a substance		
dissolves in water	\Rightarrow	we deduce <i>strongly polar covalent</i> or <i>ionic</i>
dissolves in ethano	$ol \Rightarrow$	we deduce <i>polar covalent</i>
dissolves in bromo	oethane	⇒ we deduce weakly polar covalent or pure covalent
dissolves in hexan	$e \Rightarrow$	we deduce <i>pure covalent</i> or <i>very weakly polar covalent</i>

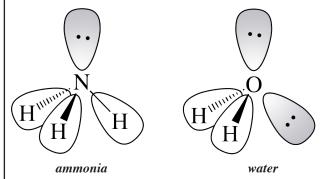
Whenever, possible we would also want to measure **Melting Points & Boiling Points** as well as **Conductivity** etc.

The table gives information about the attraction some atoms have for bonded electrons.

Atom	Attraction for electrons
С	least
Ι	
Br	
Cl	
F	greatest

Which of the following bonds is the least polar?

- \mathbf{C} $\mathbf{C} \mathbf{Br}$
- **D** C I


O2.

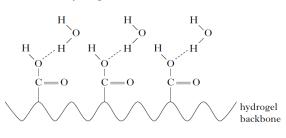
KHS

The table contains information about the attractions of some atoms for bonded electrons.

Atom	Relative attraction for bonded electrons
Н	2.2
С	2.5
Ν	3.0
0	3.5

Ammonia and water are two covalent molecules.

a) In both these molecules the electrons are not shared equally. What name is given to these types of bonds?


- b) In both these molecules there are electrons not used for bonding. What name is given to these electrons?
- c) Both these molecules have partial charges. Using the symbols δ + and δ -, mark on the molecules above the positions of these charges on each.

Q3.

Int₂

Synthetic nappies contain hydrogel polymers which attract and absorb water molecules.

The diagram below shows how water molecules are attracted to the hydrogel.

- *a*) What type of bonding is present in water molecules?
- *b*) What attracts the water molecules to the hydrogel.

Q4.

Int2

Some of the bonds in an amino acid molecule are polar covalent.

 $\begin{array}{c} H & H \\ N - C - C \\ H & H \\ \end{array} \begin{array}{c} 0 \\ 0 - H \end{array}$

The table contains information about the attraction of some atoms for bonded electrons.

Atom	Relative attraction for bonded electrons
Н	2.2
С	2.5
N	3.0
О	3.5

The most polar bond in the amino acid molecule will be

Α	$\mathrm{C}-\mathrm{H}$
В	$\mathrm{N}-\mathrm{H}$
С	$\mathrm{O}-\mathrm{H}$
D	C - O

Q5

KHS

With the help of your data book, decide which of the following ionic compounds would dissolve in water.

potassium iodide lead(II) iodide barium sulphate aluminium hydroxide

Knowledge Met in this Topic

Topic 3

Bonding

- Only the noble gases exist as *single atoms* not permanently bonded to other atoms.
- In all other substances, atoms are held together by *bonds*.
- All bonds rely on the attraction between *positive* and *negative* charge.
- Bonding usually only involves *unpaired electrons* in the *outer shell*.
- All bonding involves *orbitals* in the *outer shell* coming close enough to *overlap*
- Compounds of *metals* and *non-metals* usually result in *electrons being transferred ionic bonding*.
- Substances containing only *non-metals* usually result in *electrons being shared* held together by *covalent bonds*.

Ionic Bonding

• *Metal* atoms *lose electrons* to form more stable *positively* charged ions (*cations*),

e.g. Na⁺ , Mg²⁺ , Al³⁺ , Sn⁴⁺

• *Non-metal* atoms *gain electrons* to form more stable *negatively* charged ions (*anions*),

e.g. Cl⁻ , O²⁻ , P³⁻

• *Non-metal* atoms often form molecules which *gain electrons* to form more stable *negatively* charged ions (*anions*),

e.g. NO₃⁻, CO₃²⁻, PO₄³⁻

• Very rarely, *non-metal* atoms form molecules which *lose electrons* to form more stable *positively* charged ions (*cations*),

e.g. NH_4^+

- An *ionic bond* is the force of *attraction* between *oppositely charged ions*.
- An ion can form attractions with *many* (6 8) oppositively charged ions.

Covalent Bonding

- When atoms bond covalently, they *share electrons* in such a way as to obtain the same stable electron arrangement as the *nearest noble gas*.
- A covalent bond is the result of *two positive nuclei* attracting the same *shared pair of electrons* in overlapping orbitals
- Sometimes electrons are *not* shared equally resulting in *polar covalent bonds*.

Metallic Bonding

- When metal atoms bond they overlap orbitals and *share/lose electrons* to become more stable
- This results in *delocalised electrons* constantly moving between the orbitals of metal atoms
- A metallic bond is the result of *many positive nuclei* attracting the same *delocalised electrons* as they move between atoms
- Metallic bonding can also be described as 'a sea of electrons drifting amongst temporary positive ions'

Single Atoms

- Only the *Noble Gases* exist as single atoms at room temperature
- Attractions between single atoms are extremely weak resulting in very low Melting & Boiling Points
- Other substances can be broken down into single atoms (*atomised*) but only at extremely high temperatures.
- Substances made up of single atoms (monatomic) cannot conduct electricity

Covalent Molecules

- Molecules have a fixed number of atoms bonded together by shared electrons
- Molecules can be all sizes:

small -	$diatomic - H_2$, HCl , CO triatomic - H ₂ O , SCl ₂ , CO ₂ etc
medium -	$glucose - C_6 H_{12}O_6$ $fat - C_{57}H_{110}O_9$
large -	starch protein

- Attractions between molecules are usually weak resulting in low Melting & Boiling Points but attractions increase with molecular size
- *Attractions between* molecules with *polar covalent bonds* can be *stronger*
- Substances made up of molecules *cannot conduct electricity*
- Some metals from the middle of the Periodic Table can form covalent molecules

eg $BeCl_2$, $AlCl_3$

as shown by their *lower than expected Melting & Boiling Points* and states at room temperature

Molecular Shapes

- Most central atoms in molecules have *4 pairs of electrons* surrounding them.
- To minimise repulsions, the electron pairs will arrange themselves *tetrahedrally*
- The shape of a molecule will depend on how many of the electron pairs are being used to bond to other atoms.
 - eg
- 4 bonds CH₄ tetrahedral shape 3 bonds - NH₃ - pyramid shape

 $2 \text{ bonds} - OH_2 - \text{bent}$ shape

1 bond - FH² - linear shape

Ionic Networks

- Substances made up of molecules *cannot conduct electricity*
- A *network* (sometimes called a *lattice*) is a very regular arrangement
- All ionic compounds are solids at room temperature
- Ionic compounds do *not conduct* electricity when *solid* because the ions are not free to move.
- Ionic compounds do *conduct* electricity when *molten* or *dissolved* because the ions are free to move.
- When ionic compounds conduct, *chemical changes* take place at the electrodes.
- *Metals* are produced at the *negative* electrode, *non-metals* at the *positive*.

Covalent Networks

- Covalent *elements*, such as *silicon* and *carbon*, exist as giant *networks* of atoms.
- Covalent *compounds*, such as *silica* (*SiO*₂) and *carborundum* (*SiC*), exist as giant *networks* of atoms.
- All covalent networks are *solids* at room temperature
- Covalent networks, except *graphite*, do not conduct electricity in any state as they have *no delocalised electrons* and *no charged particles* are present.
- *Graphite* has some *delocalised electrons* which allows *graphite* to conduct electricity.

Metallic Networks

- Metallic *elements*, such as *silver* and *copper*, exist as giant *networks* of atoms.
- Metallic *alloys*, such as *bronze* (*Cu & Sn*) and *brass* (*Cu & Zn*), exist as giant *networks* of atoms.

- All metallic networks, with the exception of *mercury*, are *solids* at room temperature
- Metallic networks *all conduct electricity* due to the presence of *delocalised electrons*.

Coloured Ions

- Whilst most ionic compounds are colourless there are some which are coloured
- Most *Transition Metals* produce *compounds* with *characteristic colours*
 - eg compounds containing Cu^{2+} are always blue in colour
- Some *Transition Metals* have several ions each with *characteristic colours*

eg Co^{2+} ions are pink in colour Co^{3+} ions are green in colour Fe^{2+} ions are pale blue/green in colour Fe^{3+} ions are rust in colour

Solubility

- *Covalent Molecules* tend to dissolve in *pure covalent solvents*
- *Polar Covalent Molecules* tend to dissolve in *polar covalent solvents* such as *water*.
- Some *Ionic Compounds* can also dissolve in *water*

А

Int₂

SG

Int₂

CONSOLIDATION QUESTIONS Q1. SC Q3. A nitrogen molecule is held together by three covalent Metallic bonding is a force of attraction between bonds. А positive ions and delocalised electrons Circle В the correct words to complete the sentence. negative ions and delocalised electrons С negative ions and positive ions In a covalent bond the atoms are held together by the D a shared pair of electrons and two nuclei. electrons neutrons attraction between the positive ➤ and the Q4. protons Identify the covalent compound electrons zinc chloride Α shared pair of negative neutrons protons В magnesium sulphate С lead carbonate D hydrogen sulphide Int2 O2. Metals can be extracted from metal compounds by heat Q5. alone, heating with carbon or by *electrolysis*. Which of the following diagrams could be used to represent a) What is meant by the term *electrolysis*? the structure of a metal? A b) A solution of copper (II) chloride was electrolysed. d.c. supply B carbon carbon electrode electrode 0000 brown bubbles of gas solid 0 copper(II) chloride solution С *i*) Complete the table by adding the charge for each electrode **Observation** at **Observation** at electrode electrode D brown solid formed bubbles of gas *ii*) How could the gas be identified?

KHS Sept 2013

CONSOLIDATION QUESTIONS

Q1.

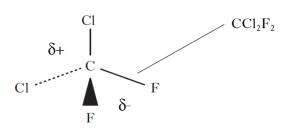
SG

Identify the covalent compound

- A zinc chloride
 B magnesium sulphate
 C lead carbonate
 D hydrogen sulphide
- Q2.

Int2

Which line in the table shows the properties of an ionic compound?


	Melting	Boiling	Conducts of	electricity?
	point (°C)	point (°C)	Solid	Liquid
A	181	1347	yes	yes
В	-95	69	no	no
C	686	1330	no	yes
D	1700	2230	no	no

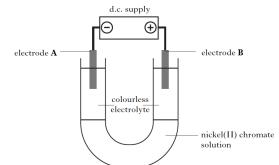
Q3.

Int2

Chlorofluorocarbons (CFCs) are a family of compounds which are highly effective as refrigerants and aerosol propellants. However, they are now known to damage the ozone layer.

One example of a CFC molecule is shown.

- *a*) What term is used to describe the *shape* of this molecule?
- *b*) What type of bonding is found in this molecule?
- *c*) What does the symbol δ + mean?
- *d*) Which atom in this molecule has the strongest attraction for electrons?


Q4.

Which of the following elements has similar properties to argon?

- A Fluorine
- B Krypton
- C Potassium
- D Zinc

Q5.

A student set up the following experiment to investigate the colour of ions in nickel(II) chromate solution.

The results are shown.

Green colour moves towards electrode **A** Yellow colour moves towards electrode **B**

- *a*) What is meant by d.c. supply ?
- *b*) Why *must* a d.c. supply be used ?
- c) What is meant by the term *electrolyte* ?
- *d*) State the colour of the nickel (II) ions ?

B

Int2

SC

Topic 3

Int₂

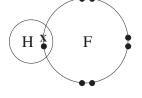
Int2

Q1.

Identify the covalent compound

Α	zinc chloride
в	magnesium sulphate
C	lead carbonate
D	hydrogen sulphide

Q2.


Int₂

SG

Information on some two-element molecules is shown in the table.

Name	Formula	Shape of molecule
hydrogen fluoride	HF	○—●
water	H ₂ O	
ammonia	NH3	

- Complete the table to show the shape of a molecule of a) ammonia.
- The hydrogen fluoride molecule can be represented as: b)

Showing all outer electrons, draw a similar diagram to represent a molecule of water, H₂O.

Q3.

The table shows the colours of some ionic compounds in solution.

Compound	Colour
potassium chloride	colourless
potassium chromate	yellow
copper chromate	green
copper sulphate	blue

The colour of the chromate ion is

Α	colourless

- В yellow
- С green
- D blue

Q4.

Tin and its compounds have many uses.

- Why do metals such as tin conduct electricity? a)
- Tin (IV) chloride is a liquid at room temperature and is b) made up of discrete molecules.

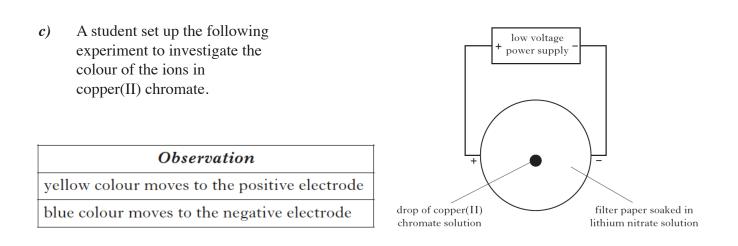
What type of bonding does this suggest is present in tin (IV) chloride?

What is the most likely *shape* of a tin (IV) chloride c) molecule?

Q5.

Which of the following substances is made up of molecules containing polar covalent bonds?

- Calcium oxide А
- B Chlorine
- С Sodium bromide
- D Water


Int₂

CONSOLIDATION QUESTIONS

Q1 Many ionic compounds are coloured.

Compound	Colour
nickel(II) nitrate	green
nickel(II) sulphate	green
potassium permanganate	purple
potassium sulphate	colourless

- *a*) Give the symbol for a potassium ion.
- b) Using the information in the table, state the colour of the potassium ion.

- *i*) Lithium nitrate solution is used as the electrolyte. What is the purpose of an electrolyte?
- *ii)* Suggest why lithium phosphate can *not* be used as the electrolyte in this experiment. You may wish to use the data booklet to help you.
- *d*) State the colour of the chromate ion.