

Advanced Higher Physics

Christmas homework

My gift to you!!!

DATA SHEET COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Solar radius Mass of Sun 1 AU Stefan-Boltzmann constant Universal constant of gravitation	-	$\begin{array}{l} 9\cdot8ms^{-2}\\ 6\cdot4\times10^{6}m\\ 6\cdot0\times10^{24}kg\\ 7\cdot3\times10^{22}kg\\ 1\cdot7\times10^{6}m\\ 3\cdot84\times10^{8}m\\ 6\cdot955\times10^{8}m\\ 2\cdot0\times10^{30}kg\\ 1\cdot5\times10^{11}m\\ 5\cdot67\times10^{-8}Wm^{-2}K^{-4}\\ 6\cdot67\times10^{-11}m^{3}kg^{-1}s^{-2} \end{array}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Planck's constant Permittivity of free space Permeability of free space Speed of light in vacuum Speed of sound in	m_{e} e m_{n} m_{p} m_{α} h ε_{0} μ_{0} c	9.11 × 10 ⁻³¹ kg -1.60 × 10 ⁻¹⁹ C 1.675 × 10 ⁻²⁷ kg 1.673 × 10 ⁻²⁷ kg 6.645 × 10 ⁻²⁷ kg 3.20 × 10 ⁻¹⁹ C 6.63 × 10 ⁻³⁴ Js 8.85 × 10 ⁻¹² Fm ⁻¹ $4\pi \times 10^{-7}$ Hm ⁻¹ 3.0 × 10 ⁸ ms ⁻¹ 3.4 × 10 ² ms ⁻¹

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength $589\,\mathrm{nm}$ and to substances at a temperature of $273\,\mathrm{K}$.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
lce	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	656 486 434 410	Red Blue-green Blue-violet Violet	Cadmium	644 509 480	Red Green Blue
	397	Ultraviolet		Lasers	
	389	Ultraviolet	Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide	10590 - 9550	Infrared
			Helium-neon	633	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ kg m ⁻³	Melting Point/ K	Boiling Point/K	Specific Heat Capacity/ J kg ⁻¹ K ⁻¹	Specific Latent Heat of Fusion/ J kg ⁻¹	Specific Latent Heat of Vaporisation/ J kg ⁻¹
Aluminium Copper Glass Ice Glycerol Methanol Sea Water Water Air Hydrogen Nitrogen Oxygen	$\begin{array}{c} 2 \cdot 70 \times 10^{3} \\ 8 \cdot 96 \times 10^{3} \\ 2 \cdot 60 \times 10^{3} \\ 9 \cdot 20 \times 10^{2} \\ 1 \cdot 26 \times 10^{3} \\ 7 \cdot 91 \times 10^{2} \\ 1 \cdot 02 \times 10^{3} \\ 1 \cdot 00 \times 10^{3} \\ 1 \cdot 29 \\ 9 \cdot 0 \times 10^{-2} \\ 1 \cdot 25 \\ 1 \cdot 43 \end{array}$	933 1357 1400 273 291 175 264 273 14 63 55	2623 2853 563 338 377 373 20 77 90	$\begin{array}{c} 9 \cdot 02 \times 10^2 \\ 3 \cdot 86 \times 10^2 \\ 6 \cdot 70 \times 10^2 \\ 2 \cdot 10 \times 10^3 \\ 2 \cdot 43 \times 10^3 \\ 2 \cdot 52 \times 10^3 \\ 3 \cdot 93 \times 10^3 \\ 4 \cdot 19 \times 10^3 \\ \ldots \\ 1 \cdot 43 \times 10^4 \\ 1 \cdot 04 \times 10^3 \\ 9 \cdot 18 \times 10^2 \end{array}$	$\begin{array}{c} 3 \cdot 95 \times 10^{5} \\ 2 \cdot 05 \times 10^{5} \\ \dots \\ 3 \cdot 34 \times 10^{5} \\ 1 \cdot 81 \times 10^{5} \\ 9 \cdot 9 \times 10^{4} \\ \dots \\ 3 \cdot 34 \times 10^{5} \\ \dots \\ $	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $

The gas densities refer to a temperature of 273 K and a pressure of $1\cdot01\times10^{5}\,Pa.$

3

1. The acceleration of a particle moving in a straight line is described by the expression

 $a = 1 \cdot 2t$.

At time, t = 0s, the displacement of the particle is 0 m and the velocity is $1 \cdot 4 \text{ m s}^{-1}$.

(a) Show that the velocity of the particle at time *t* is given by the expression

 $v = 0.6 t^2 + 1.4$.

Space for working and answer

(b) Calculate the displacement of the particle when its velocity is 3.8 m s^{-1} . 4 Space for working and answer

EP29AH0103

2. A motorised model plane is attached to a light string anchored to a ceiling. The plane follows a circular path of radius 0.35 m as shown in Figure 2.

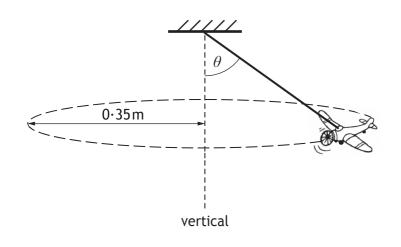


Figure 2

The plane has a mass of 0.20 kg and moves with a constant angular velocity of 6.0 rad s⁻¹.

(a) Calculate the central force acting on the plane.

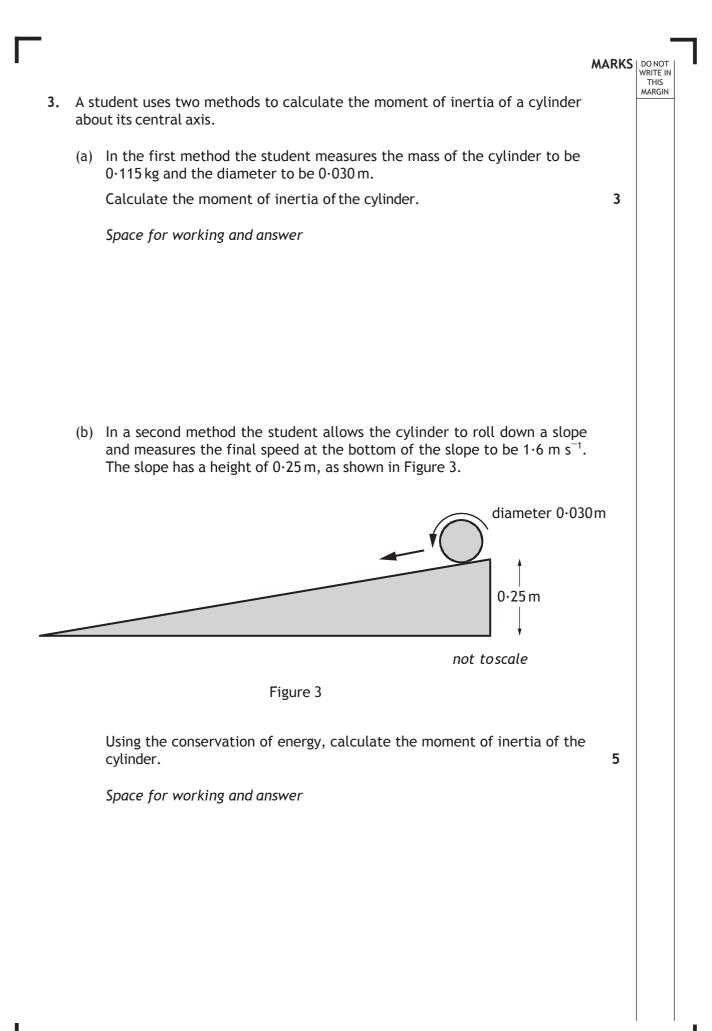
Space for working and answer

(b) Calculate the angle θ of the string to the vertical.

3

3

MARKS DO NOT


THIS

Space for working and answer

EP29AH0104

Γ			MARKS	DO NOT WRITE IN THIS	
	2.	(continued)		MARGIN	
		(c) State the effect a decrease in the plane's speed would have on angle θ . Justify your answer.	2		

EP29AH0105

EP29AH010 -

	•				-
•				MARKS	I THIS I
	3.	(contir	nued)		MARGIN
		(c)	Explain why the moment of inertia found in part (b) is greater than in part (a).	1	

EP29AH0107

4. On a trip to a theme park, a student described what happened in the fairground spinner shown in Figure 4.

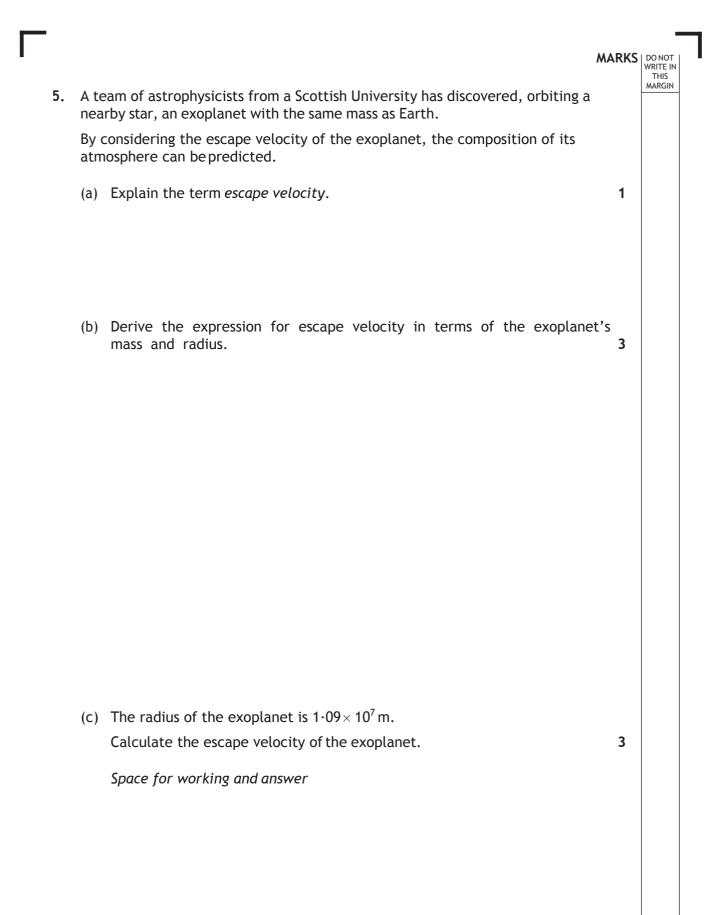
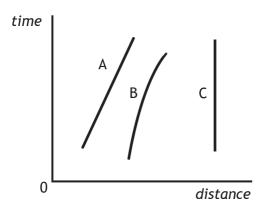
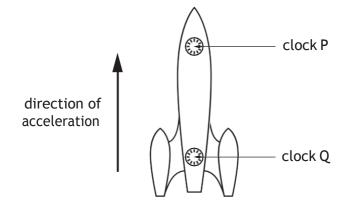

"You get thrown outwards by centrifugal force – you can feel it – it pushes you into the wall."

Figure 4


Use your knowledge of physics to discuss this statement.

EP29AH0108

EP29AH0109


6. (a) The world lines for three objects A, B and C are shown in Figure 6A

To which of these objects does the General Theory of Relativity apply? Explain your choice.

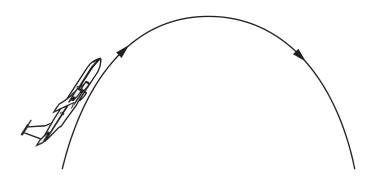
(b) A rocket ship is accelerating through space. Clocks P and Q are at opposite ends of the ship as shown in Figure 6B. An astronaut inside the rocket ship is beside clock P and can also observe clock Q.

What does the astronaut observe about the passage of time on these clocks?

Justify your answer.

2

MARKS DO NOT WRITE IN


2

THIS

EP29AH0110

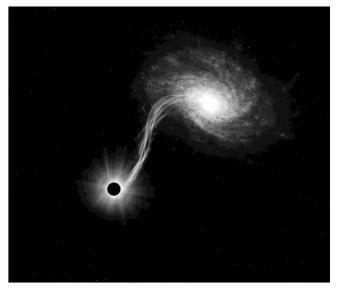
6. (continued)

(c) Part of an astronaut's training is to experience the effect of "weightlessness". This can be achieved inside an aircraft that follows a path as shown in Figure 6C.

Figure 6C

Use the equivalence principle to explain how this "weightlessness" is achieved.

2


MARKS DO NOT WRITE IN THIS MARGIN

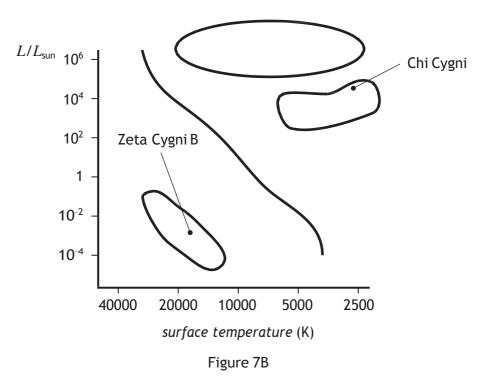
EP29AH0111

7. Cygnus X-1 is an X-ray source in the constellation Cygnus that astrophysicists believe contains a black hole. An artist's impression is shown in Figure 7A.

MARKS WRITE IN THIS MARGIN

1

The mass of the black hole has been determined to be 14.8 solar masses.


(a) (i) State what is meant by the Schwarzschild radius of a black hole.

(ii) Calculate the Schwarzschild radius of the black hole in Cygnus X-1. 4Space for working and answer

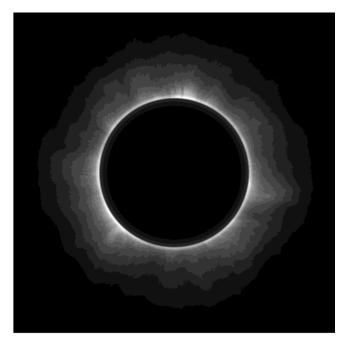
EP29AH0112

7. (continued)

(b) The Hertzsprung-Russell (H-R) diagram shown in Figure 7B shows the relationship between the luminosity and the surface temperature of stars.

Zeta Cygni B and Chi Cygni are two stars in the constellation Cygnus. They are shown on the H-R diagram. Chi Cygni is more luminous than Zeta Cygni B.

Describe two other differences between these stars.


2

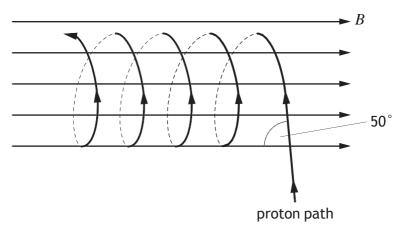
Γ		,		E IN
	8.	In 1928 Davisson and Germer fired a beam of electrons through a very thin layer of nickel in a vacuum, which resulted in the production of a diffraction pattern.	THI MARC	
		(a) (i) State what can be concluded from the results of their experiment.	1	
		(ii) Give one example of experimental evidence that photons of light exhibit particle properties.	1	
		(b) Calculate the de Broglie wavelength of an electron travelling at $4\cdot 4 \times 10^6 m s^{-1}$. Space for working and answer	3	
		 (c) A 20 g bullet travelling at 300 m s⁻¹ passes through a 500 mm gap in a target. Using the data given, explain why no diffraction pattern is observed. 	3	

EP29AH0114

MARKS DO NOT WRITE IN THIS MARGIN

9. The Sun is constantly losing mass through nuclear fusion. Particles also escape from the corona as shown in Figure 9A. This stream of particles radiating from the Sun is known as the solar wind and its main constituent, by mass, is protons.

A proton in the solar wind has energy of 3.6 MeV.

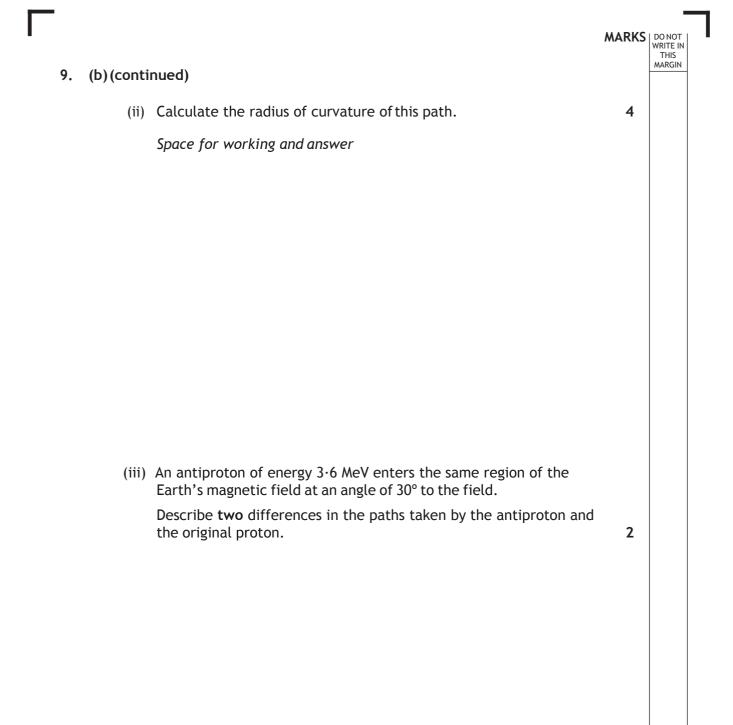

(a) Calculate the velocity of this proton.

Space for working and answer

4

9. (continued)

(b) The proton enters the magnetic field round the Earth at an angle of 50° as shown in Figure 9B. The magnetic field strength is $58\,\mu$ T.



(i) Explain the shape of the path followed by the proton in the magnetic field.

2

MARKS DO NOT WRITE IN THIS MARGIN

EP29AH011 -

EP29AH0117

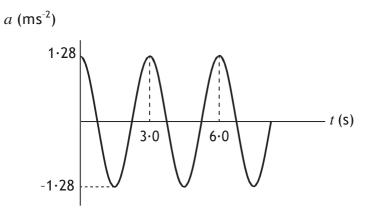
 MARKS MARKS
 MARKS MARKS
 MARKS WRITE IN THIS MARGIN
 MARKS WRITE IN THIS
 MARKS

Figure 10A

1

When the empty seat is pulled back slightly from its rest position and released its motion approximates to simple harmonic motion.

(a) State what is meant by *simple harmonic motion*.

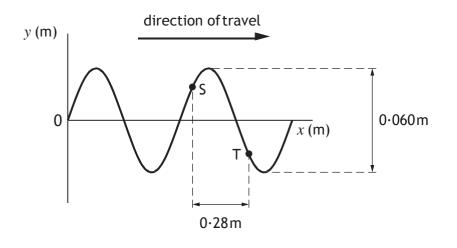

EP29AH0118

10. (continued)

(b) The acceleration-time graph for the seat with no energy loss is shown in Figure 10B.

MARKS DO NOT WRITE IN THIS MARGIN

5



(i) Show that the amplitude of the motion is 0.29 m. Space for working and answer

(ii) Calculate the velocity of the seat when its displacement is 0.10 m. 3Space for working and answer

EP29AH0119

11. A water wave of frequency 2.5 Hz travels from left to right. Figure 11 represents the displacement y of the water at one instant in time.

Points S and T are separated by a horizontal distance of 0.28 m. The phase difference between these two points is 3.5 radians.

(a) Calculate the wavelength of this wave.

Space for working and answer

- (b) A second water wave with double the frequency travels in the same direction through the water. This wave transfers five times the energy of the wave in part (a).
 - (i) Calculate the speed of this wave.

Space for working and answer

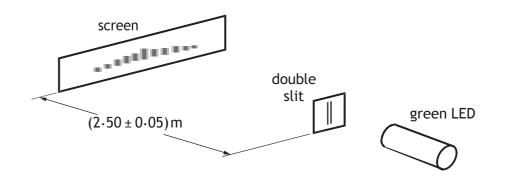
MARKS DO NOT WRITE IN THIS MARGIN

3

1

Γ	-				MARKS	WRITE IN THIS
	11.	(b)	(cont	inued)		MARGIN
			(ii)	Calculate the amplitude of this wave.	3	
				Space for working and answer		

EP29AH0121


12. A series of coloured LEDs are used in the Young's slits experiment as shown in Figure 12. The distance from the slits to the screen is $(2 \cdot 50 \pm 0 \cdot 05)$ m. The slit separation is $(3 \cdot 0 \pm 0 \cdot 1) \times 10^{-4}$ m.

MARKS DO NOT WRITE IN

1

3

THIS

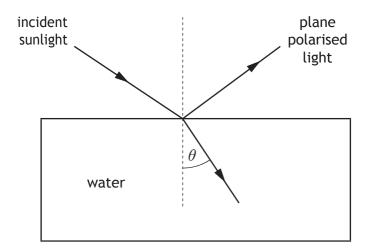
Figure	12
isuic	-

colour of LED	wavelength (nm)
red	650 ± 2
green	510 ± 2
blue	470 ± 2

- (a) State whether the pattern on the screen is caused by the division of wavefront or the division of amplitude.
- (b) (i) Calculate the fringe separation observed on the screen when the green LED is used.

Space for working and answer

12. (b) (continued) (ii) Calculate the absolute uncertainty in the fringe separation. 5 Space for working and answer 5


EP29AH0123

MARKS DO NOT WRITE IN THIS 13. A student, wearing polarising sunglasses, is using a tablet outdoors. The orientation of the tablet seems to affect the image observed by the student. Two orientations are shown in Figure 13A. landscape mode portrait mode Figure 13A (a) In landscape mode the image appears bright and in portrait mode it appears dark. (i) State what may be concluded about the light emitted from the tablet screen. 1 (ii) The student slowly rotates the tablet. Describe the change in the brightness observed by the student as it is rotated through 180°. 2

EP29AH0124

13. (continued)

(b) Unpolarised sunlight is incident on a water surface as shown in Figure 13B.

The light is 100% plane polarised on reflection.

Calculate the angle of refraction θ .

Space for working and answer

EP29AH0125

MARKS DO NOT WRITE IN THIS MARGIN

MARKS

- DO NOT WRITE IN THIS MARGIN
- 14. A group of students were evaluating an experiment to investigate the relationship between the mass on a spring and its period of oscillation. Figure 14 shows some of the apparatus used.

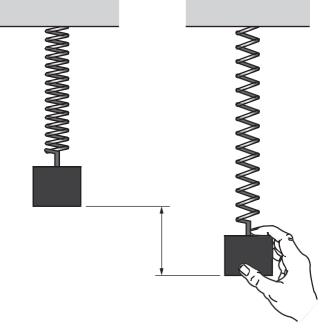


Figure 14

Student A stated "I think we should use a balance that reads to 0.001 g instead of 0.1 g. This will give us a more accurate answer".

Student B stated "I think we should repeat the time measurement and calculate a mean value".

Student C stated "I think we should time the pendulum for 10 oscillations and divide this value by 10 to get the time for one complete oscillation. This will give us a more precise answer".

Student D stated "I think it would be good to check the mass on another balance".

Using your knowledge of experimental analysis, comment on these statements.

3