Ques	tion	Expected respons	se		Max mark	Additional guidance
1	a	$a = \frac{dv}{dt} = 1 \cdot 2t$			3	Alternative for step 1 $a = 1 \cdot 2t$
		$\int \frac{dv}{dt} \cdot dt = \int 1 \cdot 2t \cdot dt$		(1)		$\int a.dt = \int 1 \cdot 2t.dt$
		$v = 0 \cdot 6t^2 + c$		(1)		Alternative for step 2
		At <i>t</i> = 0, <i>v</i> = 1·4, c = 1·4		(1)		$\int_{1.4}^{v} dv = \int_{0}^{t} 1 \cdot 2t.dt$
		$v = 0 \cdot 6t^2 + 1 \cdot 4$				$v - 1 \cdot 4 = 0 \cdot 6t^2$
						Final line must be shown, otherwise, maximum of 2 marks
1	b	$3 \cdot 8 = 0 \cdot 6t^2 + 1 \cdot 4$			4	
		$t = \sqrt{\frac{2 \cdot 4}{0 \cdot 6}}$	(1)			$s = \int_0^2 0 \cdot 6t^2 + 1 \cdot 4.dt$
		t = 2.0 (s)	(1)			$s = 0 \cdot 2(2 \cdot 0)^3 + 2 \cdot 8$ $v = 0 \cdot 6t^2 + 1 \cdot 4$
		$\frac{ds}{dt} = 0 \cdot 6t^2 + 1 \cdot 4$				$v = 0 \cdot 6t^{2} + 1 \cdot 4$ $\int v dt = \int 0 \cdot 6t^{2} + 1 \cdot 4 dt$
		$\frac{ds}{dt} \cdot dt = 0 \cdot 6t^2 + 1 \cdot 4 \cdot dt$				
		$s = 0 \cdot 2t^3 + 1 \cdot 4t + c$	(1)			
		t = 0, s = 0, c = 0				Alternative
		$s = 0 \cdot 2(2 \cdot 0)^3 + 2 \cdot 8$ $s = 4 \cdot 4 \text{ m}$	(1)			$s = \int_0^2 0 \cdot 6t^2 + 1 \cdot 4.dt$
		2 = 4 · 4 III	(1)			$s = 0.2(2.0)^3 + 2.8$
2	a	central force = $m\omega^2 r$	(1)		3	Accept:
		$= 0 \cdot 2 \times 6 \cdot 0^2 \times 0 \cdot 35$ $= 2 \cdot 5 N$	(1) (1)			3, 2·52, 2·520
2	Ь		(.)		3	Accept:
		$\tan\theta = \frac{F_c}{F_w}$	(1)		5	40, 36.1,36.09
		$\tan\theta = \frac{2\cdot 5}{mg} = \frac{2\cdot 5}{0\cdot 35 \times 9\cdot 8}$	(1)			
		$\theta = 36^{\circ}$	(1)			
2	с	heta would decrease	(1)		2	
		Central force decreases, weight st	ays the s (1)	ame.		

Advanced Higher Physics Christmas Homework Solutions

3	a	$I = \frac{1}{2}mr^2$	(1)	3	
		$I = 0.5 \times 0.115 \times 0.015^2$	(1)		
		$I = 1.3 \times 10^{-5} \mathrm{kg} \mathrm{m}^2$	(1)		
3	Ь	$\omega = \frac{v}{r}$	(1)	5	
		$\omega = \frac{1 \cdot 60}{0 \cdot 015}$	(1)		
		$\omega = 1.1 \times 10^2 \text{ (rad s}^{-1}\text{)}$			
		$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$	(1)		
		$0.28 = 0.1472 + \frac{1}{2}I(1.1 \times 10^2)^2$	(1)		
		$I = \frac{2 \times 0.1328}{(1.1 \times 10^2)^2}$			
		$I = 2 \cdot 2 \times 10^5 \text{ kg m}^2$	(1)		
3	с	Energy is lost.		1	
		Or			
		Calculation assumes no energy is lo	st. (1)		

5	a	The (minimum) velocity/speed that a mass must have to escape the gravitational field (of a planet). (1)	1	Do not accept escape gravitational force. Accept: escape gravitational
				well, velocity required to reach infinity, velocity required to give a total energy of 0 J
5	b	$E_{k} + E_{p} = 0 \qquad (1)$ $\frac{1}{2}mv^{2} - \frac{GMm}{r} = 0 \qquad (1)$ $v^{2} = \frac{2GM}{r}$ $v = \sqrt{\frac{2GM}{r}} \qquad (1)$	3	$E_k = E_p$ award 0 marks Start with $\frac{1}{2}mv^2 = \frac{GMm}{r}$ award 0 marks
5	с	$v = \sqrt{\frac{2GM}{r}}$ (1) $v = \sqrt{\frac{2 \times 6 \cdot 67 \times 10^{-11} \times 6 \cdot 0 \times 10^{24}}{1 \cdot 09 \times 10^7}}$ (1) $v = 8 \cdot 6 \times 10^3 \text{ ms}^{-1}$ (1)	3	Accept: 9, 8·57, 8·569
6	a	Line B. (1) Object B is accelerating or in a non-inertial frame of reference. (1)	2	Curved lines on spacetime graphs correspond to non- inertial frames of reference (accelerating) which is governed by the General Theory of Relativity
6	b	Time on clock P will appear to move faster. Or Time on clock Q will appear to move slower. (1) Time passes more slowly at the rear of an accelerating object. Or Time between pulses from clock Q would take longer to arrive at the astronaut. (1)	2	
6	с	The effects of gravity are exactly equivalent to the effects of acceleration. (1)	2	

			The plane accelerating downwards exactly "cancels out" the effects of being in a gravitational field. Or Plane and passengers are falling at the same rate due to the gravitational field (are in "free fall"). (1)		
7	a	i	The distance from the centre of a black hole at which not even light can escape. Or The distance from the centre of a black hole to the event horizon. (1)	1	
7	a	ii	$R_{Schwarzchild} = \frac{2GM}{c^2} $ (1) $R_S = \frac{2 \times 6 \cdot 67 \times 10^{-11} \times (14 \cdot 8 \times 2 \times 10^{30})}{(3 \times 10^8)^2} $ (1) $R_S = 4 \cdot 4 \times 10^4 \text{ m} $ (1)	4	Independent (1) mark for $(14.8 \times 2 \times 10^{30})$ Accept: 4, 4.39, 4.387
7	b		Chi Cygni is red compared to Zeta Cygni B which is blue-white. Or Chi Cygni is larger than Zeta Cygni B. Or Chi Cygni has a lower temperature than Zeta Cygni B. Any two statements for 1 mark each.	2	
8	a	i	Electrons behave like waves. (1)	1	
8	a	ii	Photoelectric effect. Or Compton scattering. Or Indication of collision and transfer of energy. (1)	1	

8 b	$\lambda = \frac{h}{p} \text{ or } \lambda = \frac{h}{mv} \tag{1}$	3	Accept: 2, 1·65,1·654
	$\lambda = \frac{6 \cdot 63 \times 10^{-34}}{4 \cdot 4 \times 10^6 \times 9 \cdot 11 \times 10^{-31}} $ (1)		
	$\lambda = 1.7 \times 10^{-10} \text{ m} \tag{1}$		
8 c	$\lambda = \frac{h}{p}$	3	
	$\lambda = \frac{6 \cdot 63 \times 10^{-34}}{300 \times 0 \cdot 02} $ (1)		
	$\lambda = 1.1 \times 10^{-34} \text{ m} \tag{1}$		
	This value is so small (that no diffraction would be seen).		
	Or		
	The de Broglie wavelength of the bullet is much smaller than the gap.		
	(1)		
9 a	$\frac{1}{2}mv^{2} = E$ (1) $v = \sqrt{\frac{2E}{m}}$ (1) $v = \sqrt{\frac{2 \times 3 \cdot 6 \times 10^{6} \times 1 \cdot 6 \times 10^{-19}}{1 \cdot 673 \times 10^{-27}}}$ (1) $v = 2 \cdot 6 \times 10^{7} \text{ ms}^{-1}$ (1)	4	Independent (1) mark for (3·6 × 10 ⁶ x 1·6 × 10 ⁻¹⁹) Accept: 3, 2·62, 2·624
9 Ь	 The perpendicular component of velocity results in circular motion. 	2	
	Or		
	The perpendicular component of velocity results in a central or centripetal force. (1)		
	The parallel component of velocity is constant.		
	Or		
	The parallel component of velocity is not subject to a horizontal force or equivalent. (1)		

						1 1
9	Ь	ii	$v = 2 \cdot 6 \times 10^{-27} \times \sin 50 = 2 \cdot 0 \times 10^{7}$	(1)	4	Accept: 4, 3.61, 3.606
			$\frac{mv^2}{r} = qvB$	(1)		, ,
			r^{r} 1.673×10 ⁻²⁷ ×(2.0×10 ⁷) ²			
			r			
			$= 1.60 \times 10^{-19} \times 2.0 \times 10^{7} \times 58 \times 10^{-6}$	(1)		
			$r = 3 \cdot 6 \times 10^3 \text{ m}$	(1)		
9	Ь	iii	The anti proton will turn in the opposit	e direction.	2	
			Or			
			The anti proton helix pitch will be grea	ter.		
			Or			
			The radius of curvature of the anti prot smaller.	ton will be		
			Any two statements for 1 mark each.			
10	a		Acceleration or unbalanced force is dir proportional, and in the opposite direct		1	a = -ky, F = -ky
			displacement. (1)			acceptable
10	Ь	i	$\omega = \frac{2\pi}{T} $ (1)		5	Accept:
			-			0.3, 0.290, 0.2902
			$\omega = \frac{2\pi}{3} \tag{1}$			
			$\omega = 2 \cdot 1 (\mathrm{rad}\mathrm{s}^{-1}) \tag{1}$			
			$a = (-)\omega^2 y \tag{1}$			
			$1 \cdot 28 = (-)2 \cdot 1^2 \times y$ (1)			
			y = 0.29 m			
10	b	ii	$v = (\pm)\omega\sqrt{A^2 - y^2} \tag{1}$		3	Accept: 0.6, 0.572, 0.5716
			$v = (\pm)2 \cdot 1\sqrt{0 \cdot 29^2 - 0 \cdot 10^2} $ (1)			,
			$v = (\pm)0.57 \ m \ s^{-1}$ (1)			
11	a		2πχ (1)		3	Accept:
			$\varphi = \frac{2\pi x}{\lambda} \tag{1}$			0.5, 0.503, 0.5027
			$3.5 = \frac{2\pi \times 0.28}{\lambda} $ (1)			
			$\lambda = 0.50 \text{ m} \tag{1}$			

				4	1
11	D	1	$\lambda = 0.25$	1	Accept: 1, 1·25, 1·250
			$v = f\lambda$		1, 1 20, 1 200
			$v = 5 \cdot 0 \times 0 \cdot 25$		
			$v = 1.3 \text{ ms}^{-1}$ (1)		
11	Ь	ii	I. I.	3	Accept:
			$\frac{I_1}{A^2} = \frac{I_2}{A^2}$		0.1, 0.067, 0.0671
			or I is proportional to A^2 (1)		
			$\frac{I_1}{0.03^2} = \frac{5I_1}{A_2^2} $ (1)		
			$A_{2} = 0.07 \text{ m}$ (1)		
	\square		-		
12	a		Division of wavefront. (1)	1	
12	b	i	$\Delta x = \frac{\lambda D}{d}$ (1)	3	Accept:
			$\Delta x = \frac{M^2}{d} \tag{1}$		4, 4·25, 4·250
			$\Delta x = \frac{510 \times 10^{-9} \times 2.5}{3.0 \times 10^{-4}} $ (1)		
			5 0/10		
			$\Delta x = 4 \cdot 3 \times 10^{-3} \text{ m} \tag{1}$		
12	Ь	ii	2×100 0 400 400	5	Accept:
			$\text{\%Uncertainty in } \lambda = \frac{2 \times 100}{510} = 0.40\% $ (1)		2, 1.68, 1.677
			%Uncertainty in D= $\frac{0.05 \times 100}{2.5} = 2\%$ (1)		
			2.5		
			%Uncertainty in d= $\frac{0.00001 \times 100}{0.0003}$ = 3.33% (1)		
			%Uncertainty in $\Delta x = \sqrt{2^2 + 3 \cdot 3^2} = 3.9\%$ (1)		
			Absolute uncertainty in $\Delta x = 3.9\% \times 4.3 \times 10^{-3}$		
			Absolute uncertainty in $\Delta x = 1.7 \times 10^{-4}$ m (1)		
13	a	i	The tablet emits plane polarised light. (1)	1	
	\square				
13	a	11	The brightness would gradually reduce from a maximum at 0° to no intensity at 90°. (1)	2	
			It would then gradually increase in intensity from		
			90° to 180° where it would again be a maximum.		
			(1)		
42				4	Accenti
13	Ь		$\tan \theta_1 = n$ (1) θ_1 = Brewster's angle	4	Accept: 37, 36·94, 36·939
			$\tan \theta_1 = 1.33 (1)$, ,
			$\theta_1 = 53 \cdot 1^\circ \qquad (1)$		
			$\theta = 90 - 53 \cdot 1 = 36 \cdot 9^{\circ}$ (1)		
	+	 			