<u>Higher Physics – Our Dynamic Universe</u>

Summary Notes

Contents

<u>Page number</u>	<u>Topic</u>
2	Section 1 – Uncertainties etc
3	Section 2 – Motion – Equations and graphs
4	Section 3 – Forces, energy and power
6	Section 4 – Collisions, explosions and impulse
8	Section 5 – Gravitation
9	Section 6 – Special Relativity
11	Section 7 – Expanding Universe

In the next few pages there will be tables with knowledge that <u>must</u> be learned before the Higher Physics exam. The wording used is what is acceptable when answering questions in the exam, although at times there will be alternative answers. In the 1st box put a \checkmark or \checkmark to show your understanding. You can use the 2nd box to check your understanding at a later date.

Using this sheet <u>will</u> help you become more prepared for your final exam, however it is down to you to put in the hard work to learn as much as possible to achieve your best.

Use the extra space sections to include any additional information that you find when doing past paper questions/reading your notes etc...

Section 1 – Uncertainties etc...

Units - The correct unit must be written beside every final answer (even if there is	
no calculation) or full marks cannot be given.	
<u>Prefixes include</u> ; Terra (T = x 10^{12}), Giga (G = x 10^{9}), Mega (M = x 10^{6}),	
Kilo (k = x 10^3), milli (m = x 10^{-3}), micro (μ = x 10^{-6}) and nano (n = x 10^{-9}). If the	
prefixes are not converted before doing a calculation full marks cannot be given.	
Significant figures – All FINAL answers must be given to the correct number of	
significant figures. An easy way round this is to give all final answers to ${f 3}$	
significant figures. Answers not rounded up will not be awarded full marks. The	
answer to a calculation that is not a final answer should <u>NEVER</u> be rounded up .	
Reading uncertainty - Every measurement will have some uncertainty in the	
value recorded. Any apparatus used will have a scale reading uncertainty. The	
<u>rules are</u> ; for a digital device = ± 1 in least significant digit, e.g. t = (1.54 ± 0.01) s.	
For an analogue device = \pm half in the smallest division on the scale of the	
apparatus, e.g. d = (12.1 ± 0.05) cm, if the ruler has divisions of millimetres.	
<u>Systematic uncertainties – These are uncertainties</u>	
caused by the apparatus or the experimenter where the	
same mistake is made each time a measurement is	
taken. If a graph with a line of best fit through the origin	
is expected and this does not happen, this is usually	
down to a systematic uncertainty.	
Random uncertainty – This occurs when an experiment is repeated. To find the	
random uncertainty the mean (average) value must be found first and then the	
max. value – min. value	
equation: Random uncertainty = number of values	
is used to calculate the random uncertainty. The final answer must be written in	
what is called the absolute form which is: '= (mean value ± uncertainty) units'. If	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it.	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. Percentage uncertainty – An absolute uncertainty can be changed to a	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation:	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation:	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation: $\frac{\text{uncertainty}}{1 - 1} \times 100\%$ e.g. t = (0.5 ± 0.1) s \longrightarrow t = (0.5 ± 20%) s	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation: $\frac{\text{uncertainty}}{\text{mean value}} \times 100\% \qquad \text{e.g. t} = (0.5 \pm 0.1) \text{ s} \longrightarrow \text{t} = (0.5 \pm 20\%) \text{ s}$	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation: $\frac{uncertainty}{mean value} \times 100\% \qquad e.g. t = (0.5 \pm 0.1) s \longrightarrow t = (0.5 \pm 20\%) s$ Extra space for additional information	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation: $\frac{uncertainty}{mean value} \times 100\% \qquad e.g. t = (0.5 \pm 0.1) s \longrightarrow t = (0.5 \pm 20\%) s$ Extra space for additional information	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation: <u>uncertainty</u> x 100% e.g. $t = (0.5 \pm 0.1) \text{ s} \longrightarrow t = (0.5 \pm 20\%) \text{ s}$ Extra space for additional information	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation: $\frac{\text{uncertainty}}{\text{mean value}} \times 100\% \qquad \text{e.g. t} = (0.5 \pm 0.1) \text{ s} \longrightarrow \text{t} = (0.5 \pm 20\%) \text{ s}$ Extra space for additional information	
what is called the absolute form which is: '= (mean value ± uncertainty) units' . If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation: $\frac{\text{uncertainty}}{\text{mean value}} \times 100\% \qquad \text{e.g. t} = (0.5 \pm 0.1) \text{ s} \longrightarrow \text{t} = (0.5 \pm 20\%) \text{ s}$ Extra space for additional information	
what is called the absolute form which is: '= (mean value ± uncertainty) units'. If the random uncertainty is large, taking more repeated readings will reduce it. <u>Percentage uncertainty –</u> An absolute uncertainty can be changed to a percentage uncertainty. To do this you would use the equation: <u>uncertainty</u> x 100% e.g. t = (0.5 ± 0.1) s \longrightarrow t = (0.5 ± 20%) s Extra space for additional information	

Section 2 – Motion – Equations and graphs.

A scalar quantity is described as having magnitude (a size).	
e.g. time = 30 s or mass = 20 kg.	
A vector quantity is fully described as having a magnitude (a size) and direction.	
e.g. force = 50 N downwards or velocity = 20 ms ⁻¹ East.	
All vector quantities must be added tip-to-tail to find the resultant vector. The	
resultant vector is the result of the addition of the original vectors.	
If the vectors are added when at right angles, the resultant vector can be found	
by arranging the vectors tip-to-tail. Pythagoras is used to find the magnitude and	
trigonometry (tan $\theta = \frac{\text{opp}}{\text{adj}}$) is used to find the direction. θ must be labelled on	
the diagram or a 3 figure bearing must be used to show the direction.	
If the vectors are NOT at right angles Pythagoras and trigonometry CANNOT be	
used. In this case a scale drawing must be used to find the resultant vector. You	
must use an appropriate scale which allows you to draw out the diagram without	
making the drawing too small. A ruler is used to measure the magnitude and a	
protractor to measure the direction of each vector.	
Speed is a scalar quantity and is defined as the distance travelled per second.	
d = vt	
Velocity is a vector quantity and is defined as the displacement travelled per	
second. s = vt displacement and velocity must have a direction.	
A vector component is when a vector is	
split into either its vertical or horizontal	
components. The equations to find the Θ measured	
horizontal and vertical components are; θ from horizontal	
$v_{H} = v \cos \Theta$ and $v_{v} = v \sin \Theta$ (Not in relationship sheet!!!)	
The four equations of motion are;	
$v = u + at$ $s = ut + \frac{1}{2} at^{2}$ $v^{2} = u^{2} + 2as$ $s = \frac{1}{2}(u + v)t$	
When solving these problems always start by writing ${f s} \ {f u} \ {f v} \ {f a} \ {f t}$ and then identify	
the correct equation to be used. Remember that only time (t) is a scalar quantity	
and as the supertities (2 , 1 , 1 , 2) are all have the size of a show the size dimension	
and so the quantities (S u v a) can all have + or - signs to show their direction.	
In displacement-time graphs the gradient of the line is equal to the velocity of the	
In displacement-time graphs the gradient of the line is equal to the velocity of the object. If the displacement is negative this simply means a change in direction!! A	
In displacement-time graphs the gradient of the line is equal to the velocity of the object. If the displacement is negative this simply means a change in direction!! A diagonal line in a displacement-time graph will be shown as a horizontal line on a	
In displacement-time graphs the gradient of the line is equal to the velocity of the object. If the displacement is negative this simply means a change in direction!! A diagonal line in a displacement-time graph will be shown as a horizontal line on a velocity-time graph. A curved line represents an increasing/decreasing velocity.	
In displacement-time graphs the gradient of the line is equal to the velocity of the object. If the displacement is negative this simply means a change in direction!! A diagonal line in a displacement-time graph will be shown as a horizontal line on a velocity-time graph. A curved line represents an increasing/decreasing velocity. In velocity-time graphs the gradient of the line is equal to the acceleration of the	
In displacement-time graphs the gradient of the line is equal to the velocity of the object. If the displacement is negative this simply means a change in direction!! A diagonal line in a displacement-time graph will be shown as a horizontal line on a velocity-time graph. A curved line represents an increasing/decreasing velocity. In velocity-time graphs the gradient of the line is equal to the acceleration of the object. The area under the line of the graph is equal to the displacement	
In displacement-time graphs the gradient of the line is equal to the velocity of the object. If the displacement is negative this simply means a change in direction!! A diagonal line in a displacement-time graph will be shown as a horizontal line on a velocity-time graph. A curved line represents an increasing/decreasing velocity. In velocity-time graphs the gradient of the line is equal to the acceleration of the object. The area under the line of the graph is equal to the displacement travelled. A line which cuts the time-axis (positive to negative velocity or the	
In displacement-time graphs the gradient of the line is equal to the velocity of the object. If the displacement is negative this simply means a change in direction!! A diagonal line in a displacement-time graph will be shown as a horizontal line on a velocity-time graph. A curved line represents an increasing/decreasing velocity. In velocity-time graphs the gradient of the line is equal to the acceleration of the object. The area under the line of the graph is equal to the displacement travelled. A line which cuts the time-axis (positive to negative velocity or the other way round) also shows a change in direction. A diagonal line in a velocity-	

In acceleration-time graphs a horizontal line shows a constant acceleration. The	
area under the line of the graph is equal to the velocity of the object. Care should	
be taken when interpreting acceleration-time graphs as what appears to be a	
deceleration in one direction can also be an acceleration in the opposite	
direction!	
When converting from a velocity-time graph to an acceleration-time graph the	
acceleration of each line must be found using the equation $\mathbf{a} = \frac{\mathbf{v} - \mathbf{u}}{\mathbf{t}}$. Each	
acceleration can then be drawn as a horizontal line on the acceleration-time	
graph.	
When drawing any graphs remember the basics!!! You must label each axis with	
headings and units, include an origin and numerical values must be included	
(they may need to be calculated using an equation) unless you are not required	
to do so.	
Extra space for additional information	

Section 3 – Forces, energy and power

Revision of Nat 5 – Objects which have balanced forces will be at rest or travel at	
a constant speed (terminal velocity) in a straight line. Balanced forces are both	
equal in size and opposite in direction. Objects which have unbalanced forces	
acting on them have an acceleration (could be a deceleration).	
The size of the acceleration is linked to the mass and acceleration using the	
equation: F = ma where the acceleration is directly proportional to the	
unbalanced force and the mass is inversely proportional to the unbalanced force.	
The resultant force is a single force which will have the same effect as all the	
other forces which produce it.	
Friction is a resistive force which always acts in the opposite direction to motion.	
When using the equation: F = ma F represents the unbalanced or resultant	
force. If the unbalanced or resultant force is not determined and then used you	
will only be awarded one mark for these questions.	

Weight is a downwa	ard force which all	masses have due to	the gravitational field	
strength of the Ea	arth. This is show	vn by the equation:	W = mg	
g = 9.8 Nkg ⁻¹ on Eart	:h.		-	
In a lift my apparent	t weight will chang	e depending on the a	cceleration of the lift.	
If the acceleration is	s 0 ms ⁻² , (constant	speed) then the app	arent weight is equal	
to my actual weight.				
If the lift is acceler	ating up/decelerat	ting down the appare	ent weight is greater	
than my actual weig	ht.	0 11	0 0	
If the lift is decelerating up/accelerating down the apparent weight is less than				
my actual weight.	0 11	0 11	U	
If the lift is in free fa	ll the apparent we	ight is zero. Aarrrgghh	hh!!!!!	
When two objects are	e joined together an	d one is pulled/pushed	there is a tension force	
between the two obj	ects. The tension is	a result of the object	that is attached to the	
object that is being p	oulled/pushed (A ca	ravan is the cause of t	he tension in a towbar	
when pulled by a car).				
When asked to calc	ulate the tension	force the equation ${f F}$	= ma must be used	
twice. First of all the	e acceleration is for	und using the pulling/	pushing force and the	
total mass (both ob	jects added togetl	her). Second the tensi	ion is found using the	
acceleration and ON	ILY the mass of the	e object that is causing	g the tension.	
Tension questions m	nay also involve fric	ctional forces and care	e must be taken when	
using the equation	F = ma so that	only the unbalanced	force is used in the	
equation.				
An object on a slope	e will experience a	force parallel to the s	lope due to its weight	
and a force perpend	licular to the slope	(reaction force). Thes	e equations are;	
W _{parallel} = mg sinθ	and Wperpendicular	= mg cosθ (Not in re	elationship sheet!!!)	
Conservation of ene	ergy means that e	nergy cannot be crea	ted or destroyed but	
only transferred fr	om one type to	another. Power is	the rate of energy	
transferred (energy	transferred per se	econd) and so both ι	inits; Watts or Joules	
per second can be u	sed as a measuren	nent of power. The fo	llowing equations are	
linked to conservation	on of energy;		-	
E _w = Fd	$E_k = \frac{1}{2} mv^2$	E _p = mgh	$P = \frac{E}{t}$	
Extra space for additiona	al information			

Section 4 – Collisions, explosions and impulse

Momentum is the measure of an object's motion and is the product of mass and			
velocity. $\mathbf{p} = \mathbf{mv}$ The units of momentum are kgms ⁻¹ .			
Momentum is a vector quantity and therefor can have a positive and negative value.			
The law of conservation of momentum has two parts to it. Both parts must be			
stated or full marks will not be awarded! Total momentum before a collision			
equals total momentum after a collision in the absence of external forces .			
The law mentioned above is the starting point for any calculations involving			
collisions. For a collision there will always be two individual momentums before			
the collision. If the objects stick together on impact there will be one momentum			
after the collision and if the objects separate on impact there will be two			
momentums after the collision.			
The idea is to show this at the start of the calculation;			
total momentum before = total momentum after			
m_1v_1 + m_2v_2 = m_3v_3 \leftarrow Objects stick together			
or			
total momentum before = total momentum after			
$m_1v_1 + m_2v_2 = m_3v_3 + m_4v_4 \leftarrow Objects separate$			
For explosions it is a bit different.			
There will only be one object before the explosion and therefor only one			
momentum. As the object is stationary (v = 0 ms ⁻¹) the momentum is zero. The			
object is split in to two and each part travels in the opposite direction from each			
other.			
total momentum before = total momentum after			
$\mathbf{m_1}\mathbf{v_1}$ = $\mathbf{m_2}\mathbf{v_2}$ + $\mathbf{m_3}\mathbf{v_3}$ \leftarrow Explosion			
As momentum is a vector quantity one velocity will be positive and one will be			
negative (opposite direction).			
For collisions you may be asked to show by calculation whether an interaction is			
an elastic or inelastic collision. An elastic collision is one where kinetic energy is			
conserved (the kinetic energy before the collision is equal to the kinetic energy			
after the collision). An inelastic collision is where kinetic energy is NOT			
conserved . To show if the kinetic energy is conserved the equation; $E_k = \frac{1}{2} mv^2$			
is used for each momentum (if the objects stick together on impact there will be			
3 momentums, 2 before the collision and 1 after, and therefor there will be 3			
kinetic energies also). This is how you could start the calculation;			
$E_k = \frac{1}{2} mv^2$ so			
Total kinetic energy before = Total kinetic energy after			
$\frac{1}{2}$ mv ² + $\frac{1}{2}$ mv ² = $\frac{1}{2}$ mv ² \leftarrow Objects stick together			
Then state at the end if the kinetic energy is/is not conserved and if the collision			

Section 5 - Gravitation

A satelli	te is an	object w	hich is orbiting the Earth. This actually means it is falling	
towards the Earth. The reason the satellite never crashes into the Earth is				
because although it has a constant downwards acceleration (9.8 ms ⁻²) it also has				
a very la	arge con	stant ho	rizontal velocity. It therefor follows a curved path and as	
the Eart	h is also	curved it	t never crashes to Earth.	
A proje	ctile is	where a	n object has both horizontal and vertical motion. This	
means	we nee	d to find	d the vector components discussed in section 2 with	
equatio	ns of mo	otion;	$v_{H} = v \cos \Theta$ and $v_{V} = v \sin \Theta$	
		-	(Not in	
		7	relationship	
v		v_{v}	sheet!!!)	
<u> </u>	v_h	> I	`	
 In proje	ctiles th	e first thi	range ing we must do is to calculate the horizontal and vertical	
velocity	(as show	wn above	a) The next is to create a 's u v a t' table to input both	
velocity	(03 5110)		borizontal and vertical information (including the	
	Horiz.	Vert.	horizontal and vertical velocity you have just	
s =			calculated) There is more information we can add to	
u =			the table:	
v =				
a =			 Horizontal acceleration is always zero (nogligible air registance) 	
t =			 vertical acceleration is always -9.8 ms⁻² 	
		I	(negative as it is downwards).	
The rest	of the i	nformati	on needed will be given in the question.	
<u>Remem</u>	ber!! Ar	n upward	s motion is a positive value and downwards motion is a	
negative	e value.	Time is a	always positive as it is a scalar quantity and is the same	
for both	horizor	ital and v	ertical motion.	
There a	re anoth	er few th	nings which are helpful in these questions:	
• At th	ne maxir	num heig	ght the vertical velocity is zero.	
• The	total ti	me of fli	ght is double the time taken to get to the maximum	
neig	nt. projectil	la nath ic	summatrical aither side of the maximum height	
• The	projecti ial vertic	al velocit	symmetrical entref side of the maximum height. ty = - final vertical velocity)	
If frictio	n IS take	en into a	ccount (not negligible) then this will impact on the flight	
of the o	obiect. 1	The horiz	vontal velocity (\mathbf{v}_{μ}) will decrease and this will therefor	
decreas	e the ho	rizontal	displacement. The time of flight will decrease as well.	
The univ	versal lav	v of grav	itation is used to find the force of attraction between two	
objects.	This depe	ends on th	ne mass of the two objects and the distance they are apart.	
	-	. Gm₁ı	M 2 11 2 1 2	
	F	$=\frac{1}{r^2}$		

When using the equation above	
the distance, \mathbf{r} is from the $\mathbf{m_1}$ $\mathbf{m_2}$	
centre of mass of the objects.	
This usually will only matter if U	
the masses involved are	
planets due to their size.	
If the gravitational force is calculated between an object and a planet, this force	
will be equal to the weight of the object at that distance from the planet.	
gravitational force - weight	
The gravitational field strength of the planet at that point can then be calculated	
using W = mg .	
Extra space for additional information	

Section 6 – Special Relativity

Special relativity involves objects traveling at speeds close to the speed of light	
(usually more than 10% of the speed of light).	
The speed of light (c) is always 3 x 10^8 ms ⁻¹ in any reference frame. The velocity	
of the vehicle is often given as a decimal of the sepeed of light ie 0.8 c . In this case	
the speed of the vehicle is found by;	
0.8 multiplied by the speed of light = 2.4 x 10 ⁸ ms ⁻¹ .	
When doing questions involving special relativity you must decided which	
reference frame is being considered when given data to a question.	
If one person has a speed of 5 ms ⁻¹ and another person a speed of 3 ms ⁻¹ then	
their speed relative to each other would be $2ms^{-1}$. This means they would have	
different frames of reference. These speeds are far too low for relativistic effects	
but gives an idea to what is meant by a frame of reference.	
In any special relativity question there are two observers that are being	
considered. One will be a stationary observer and one will be a moving observer.	
The stationary observer is always stationary with regards to the moving vehicle	
and the moving observer will always be in the moving vehicle.	

Time dilation is the difference in time measured by a stationary observer compared to a moving observer. The time is only dilated (increased) for the stationary observer.	
The time measured by a stationary observer will always be greater than the time measured by a moving observer when an object is travelling at close to the speed of light.	
The equation used for time dilation is: $\mathbf{t'} = \frac{\mathbf{t}}{\sqrt{1 - \left(\frac{\mathbf{v}}{\mathbf{c}}\right)^2}}$	
where; ${f t}$ = the time measured in a stationary frame of reference.	
t' = the time measured by the stationary observer for a moving object.	
Length contraction is the decrease in length of an object moving relative to a	
stationary observer observer.	
distance measured by a stationary observer will always be less than the distance measured by a moving observer when a vehicle is travelling at close to the speed of light.	
The equation used for length contraction is: $l' = l \sqrt{1 - \left(\frac{v}{c}\right)^2}$	
where; l = the length of the object when in a stationary frame of reference. l' = the length of the moving object when measured by a stationary	
observer.	
The Lorentz factor \mathbf{Y} is a good way of showing the how the speed of the vehicle effects time dilation and length contraction. A Lorentz factor of 1 indicates that the speed is too small for special relativistic effects (no time dilation or length contraction takes place). If the Lorentz factor increases above 1 then special relativistic effects will begin to occur. This relationship is shown using the equation below: $\mathbf{\gamma} = \frac{1}{\sqrt{1-\frac{1}{2}}}$	
(Equation given in exam if needed but is not in relationship sheet) $\sqrt{1 - \left(\frac{v}{c}\right)^2}$	
Extra space for additional information	

Section 7 – Expanding Universe

The Doppler effect is the change in the observed frequency of a wave when a	
source is moving relative to an observer.	
When a source is moving toward you at a constant speed the observed frequency	
will be greater than the frequency of the sound when the source is at rest. This	
occurs as the observed wavelength of the sound will decrease as there are more	
wavefronts per second observed due to the forward motion of the object.	
Remember! The source is NOT emitting more waves per second!	
When a source is moving away from you at a constant speed the observed	
frequency will be less than the frequency of the sound when the source is at rest.	
This occurs as the observed wavelength of the sound will increase as there are	
less wavefronts per second observed due to the forward motion of the object.	
Remember! The source is NOT emitting less waves per second!	
The equation for the Doppler effect is:	
where; \mathbf{V} = speed of wave	
V_s = speed of source (V)	
$f_{\rm s}$ = frequency of source $f_{\rm o} = f_{\rm s} \left(\frac{1}{{\rm v} \pm {\rm v}_{\rm s}} \right)$	
f_{o} = observed frequency	
For a source moving toward an observer the negative sign is used in the equation	
(a greater observed frequency) and for a source moving away from an observer	
the positive sign is used in the equation (a lower observed frequency).	
An example of the Doppler effect is redshift. Redshift is when galaxies that are	
moving away from us emit light which has a wavelength shifted towards red. The	
colour of the galaxy is NOT red! This can be observed by comparing line spectra	
of an element from a galaxy to the same element on Earth. The emission lines in	
the line spectra from the galaxy will have greater wavelengths than the line	
spectra on Earth. A galaxy that is moving toward us will exhibit blueshift	
(wavelengths moving towards blue).	
The change in wavelength of a line in the spectra of an element when observed	
from a galaxy compared to Earth can be used to calculate the redshift of the	
galaxy using the equation;	
$z = \frac{\lambda_{observed} - \lambda_{rest}}{\lambda_{observed}}$	
$-\lambda_{rest}$	
where: $\lambda_{abconved}$ = the wavelength of light from the galaxy	
$\lambda_{\rm rost}$ = the wavelength of light on Earth	
\mathbf{z} = redshift (no units)	
Redshift is defined as the ratio of the recessional velocity of a galaxy (speed the	
galaxy is moving away from Earth) to the speed of light. This is shown in the	
equation;	
V _{galaxy}	
$z = \frac{1}{c}$	

Hubble's law is a relationship between the recessional velocity of a star and the	
distance the star is from Earth. The farther away the star is from Earth the	
greater the recessional velocity of the star. This is shown in the equation;	
$\mathbf{v} = \mathbf{H}_{o} \mathbf{d}$ where Hubble's constant. $\mathbf{H}_{o} = 2.3 \times 10^{-18} \mathrm{s}^{-1}$	
Hubble's constant can be used to estimate the age of the universe using the	
equation; $\mathbf{t} = \frac{1}{H_0}$ (This equation is not in the relationship sheet).	
The temperature of stars can be estimated by observing the peak wavelength of radiation emitted by the star. A star with a higher temperature will emit radiation with a greater peak frequancy and therefor a smaller peak wavelength. The greater the temperature , the lower the value of the peak wavelength . This is shown as:	
$T \lambda_{peak} = constant$	
There are two theories about the beginning of the Universe:	
1. Closed universe: the universe will slow its expansion and eventually begin to	
contract.	
2. Open universe: the universe will continue to expand forever.	
The mass of the Universe is the major factor which will determine which theory is	
correct. The mass of a galaxy can be estimated by the orbital speed of stars	
within it and this allows scientists to estimate the total mass of the Universe.	
Scientists believe there is more mass in the Universe than can be measured. This	
extra mass is called 'dark matter' and cannot be detected by scientists.	
Scientists believe the Universe is expanding at a greater rate than is expected.	
The hig hang theory (open Universe) suggests that the Universe began from a	
single point and then expanded. There are some pieces of evidence to support	
this which are:	
1. Commis Misrowaya Deckground Dediction is enreed evenly in even	
1. Cosmic Microwave Background Radiation is spread evening in every	
2 The relative abundances of hydrogen and belium in the universe	
3 There are many more galaxies which show redshift compared to blueshift	
4. Olber's Paradox – the sky is dark at night due to the finite age of the	
universe (the light from every star cannot be observed).	
You must be able to explain why these are evidence for the big bang theory.	
Extra space for additional information	