Exercise 12 - Emf and Internal Resistance

Past Paper Homework Questions

 A battery of e.m.f. 12 V and internal resistance 3·0 Ω is connected in a circuit as shown.

When switch ${\bf S}$ is closed the ammeter reading changes from

- A 2.0 A to 1.0 A
- B 2.0 A to 2.4 A
- C 2.0 A to 10 A
- D 4.0 A to 1.3 A
- E 4.0 A to 6.0 A.

- 3. The e.m.f. of a battery is
 - A the total energy supplied by the battery
 - B the voltage lost due to the internal resistance of the battery
 - C the total charge which passes through the battery
 - D the number of coulombs of charge passing through the battery per second
 - E the energy supplied to each coulomb of charge passing through the battery.

 A battery of e.m.f. 24 V and negligible internal resistance is connected as shown.

The reading on the ammeter is $2.0 \,\mathrm{A}$.

The resistance of R is

- A 3.0 Ω
- B 4.0Ω
- C 10Ω
- D 12Ω
- E 18 Ω.
- In the following circuit, the battery has an e.m.f. of 8·0 V and an internal resistance of 0·20 Ω.

The reading on the ammeter is 4.0 A.

The resistance of R is

- A 0.5 Ω
- B 1.8Ω
- C 2·0 Ω
- D 2·2Ω
- Ε 6.4 Ω.

5. A power supply of e.m.f. E and internal resistance 2.0Ω is connected as shown.

The computer connected to the apparatus displays a graph of potential difference against time.

The graph shows the potential difference across the terminals of the power supply for a short time before and after switch S is closed.

- (a) State the e.m.f. of the power supply.
- (b) Calculate:
 - (i) the reading on the ammeter after switch S is closed;
 - (ii) the resistance of resistor R.

1

3

(c) Switch S is opened. A second identical resistor is now connected in parallel with R as shown.

The computer is again connected in order to display a graph of potential difference against time.

Copy and complete the new graph of potential difference against time showing the values of potential difference before and after switch S is closed. Electrically heated gloves are used by skiers and climbers to provide extra warmth.

(a) Each glove has a heating element of resistance 3.6Ω .

Two cells, each of e.m.f. $1.5 \, \text{V}$ and internal resistance $0.20 \, \Omega$, are used to operate the heating element.

Switch S is closed.

(i) Determine the value of the total circuit resistance.

1

(ii) Calculate the current in the heating element.

3

(iii) Calculate the power output of the heating element.

- 3
- (b) When in use, the internal resistance of each cell gradually increases.

What effect, if any, does this have on the power output of the heating element?

Justify your answer.

2

 (a) A supply of e.m.f. 10·0 V and internal resistance r is connected in a circuit as shown in Figure 1.

_

The meters display the following readings.

Reading on ammeter = $1.25 \,\text{A}$

Reading on voltmeter = 7.50 V

- (i) What is meant by an e.m.f. of 10.0 V?
- (ii) Show that the internal resistance, r, of the supply is $2 \cdot 0 \Omega$.
- (b) A resistor R is connected to the circuit as shown in Figure 2.

Figure 2

The meters now display the following readings.

Reading on ammeter = 2.0 A

Reading on voltmeter = 6.0 V

- (i) Explain why the reading on the voltmeter has decreased.
- (ii) Calculate the resistance of resistor R.

2

1

2