# National 5 Physics

## Unit 1 – Waves & Radiation

#### Contents

| Page number | <u>Topic</u>                              |
|-------------|-------------------------------------------|
| 2           | Using the equations                       |
| 3           | Section 1 – Wave parameters and behaviour |
| 4           | Section 2 – Electromagnetic Spectrum      |
| 6           | Section 3 – Light                         |
| 7 - 10      | Section 4 – Nuclear radiation             |

In the next few pages there will be tables with knowledge that <u>must</u> be learned before the National 5 Physics exam. In the 1<sup>st</sup> box put a  $\sqrt{}$  or  $\sum_{k=1}^{\infty}$  to show your understanding. You can use the 2<sup>nd</sup> box to check your understanding at a later date.

Using this sheet **<u>will</u>** help you become more prepared for your final exam.

Use the extra space sections to include any additional information that you find when doing past paper questions/reading your notes etc...



## Section 1 – Wave parameters and behaviours

| Energy can be transferred as waves.                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------|--|
| Crest<br>Amplitude<br>Trough                                                                                       |  |
| <u>Frequency</u> is defined as the number of waves per second.                                                     |  |
| <u>Amplitude</u> is the height from the centre to the crest/trough of a wave.                                      |  |
| Period is the time for one complete wave to pass a point.                                                          |  |
| <u>Wavelength</u> is the length of one complete wave.                                                              |  |
| <u>Wave speed</u> is the distance travelled by a wave in one second.                                               |  |
| The speed of a wave is calculated using the equation: <b>d = v t</b>                                               |  |
| where d = the distance measured in metres (m) and t = the time measured in                                         |  |
| seconds (s). v is the speed of the wave measured in metres per second (ms <sup>-1</sup> ).                         |  |
| In a transverse wave the particles vibrate at <u>90°</u> to the direction of travel of the                         |  |
| wave. Examples of these waves are; all electromagnetic waves (radio waves etc)                                     |  |
| and water waves.                                                                                                   |  |
| In longitudinal waves the particles vibrate along the direction of travel of the                                   |  |
| wave. Examples of these waves are sound waves.                                                                     |  |
| frequency = $\frac{1}{\text{period}}$ $\mathbf{f} = \frac{1}{T}$ where the frequency is measured in hertz (Hz) and |  |
| the period is measured in seconds (s).                                                                             |  |
| speed = frequency x wavelength $\mathbf{v} = f \mathbf{\lambda}$ where wavelength is measured in                   |  |
| metres (m) and speed measured in metres per second (ms <sup>-1</sup> ).                                            |  |
| Diffraction occurs when waves pass an object and can bend around the object. If                                    |  |
| the wavelength is large then there will be more diffraction. This is why Radio                                     |  |
| waves diffract better than TV waves.                                                                               |  |



#### Section 2 – Electromagnetic Spectrum

| The Electromagnetic spectrum has 7 bands which are arranged in order. Below                                          |  |
|----------------------------------------------------------------------------------------------------------------------|--|
| they are shown in order from largest wavelength to shortest wavelength.                                              |  |
| TV & Radio Microwave Infrared Visible Ultraviolet X-Ray Gamma Ray                                                    |  |
|                                                                                                                      |  |
| $ \land \land$ |  |
|                                                                                                                      |  |
| Longest wavelength Shortest wavelength                                                                               |  |
| The order is <b>reversed</b> if they are arranged in order of largest frequency to                                   |  |
| smallest frequency. As the wavelength decreases the frequency increases.                                             |  |
| The <b>higher</b> the frequency the <b>greater</b> the energy. Gamma rays are the most                               |  |
| dangerous as the have a high frequency and Radio and TV waves are the least                                          |  |
| dangerous as they have the lowest frequency.                                                                         |  |

| All Electromagnetic waves travel at 3 x 10 <sup>8</sup> ms <sup>-1</sup> . When asked to state the speed |  |
|----------------------------------------------------------------------------------------------------------|--|
| of any electromagnetic wave the units (ms <sup>-1</sup> ) must be written or <u>zero marks</u> will      |  |
| be given.                                                                                                |  |
| <b><u>Radio and TV waves</u></b> are used in long distance communication. They are detected              |  |
| using an <u>aerial</u> .                                                                                 |  |
| Microwaves are used in mobile phones and cooking. They are detected using an                             |  |
| aerial.                                                                                                  |  |
| Infrared is emitted by all hot objects. They are detected using a photodiode.                            |  |
| Visible light is used in lasers. They are detected by our eyes and photographic                          |  |
| <u>film</u> .                                                                                            |  |
| Ultraviolet is used to show up certain chemicals. They are detected using                                |  |
| fluorescent materials and photographic film. Too much exposure can cause                                 |  |
| <u>skin cancer</u> .                                                                                     |  |
| X-rays are used to examine broken bones and metal objects that are not easy to                           |  |
| see. They are detected using <b>photographic film</b> . The <b>darker</b> the film the greater           |  |
| the levels of x-ray radiation present. Too much exposure can cause cells to                              |  |
| change or be killed.                                                                                     |  |
| Gamma rays are used in Nuclear power stations and in medicine. They are                                  |  |
| detected using a Geiger Muller tube and photographic film. They are very                                 |  |
| dangerous and can easily change and kill human <u>cells</u> .                                            |  |
| Extra space for additional information.                                                                  |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |
|                                                                                                          |  |

## Section 3 – Light

| Refraction is defined as the change in spe          | <b>ed</b> of light as it passes from one      |  |
|-----------------------------------------------------|-----------------------------------------------|--|
| medium (material) to another.                       |                                               |  |
| Incident Ray                                        | i = angle of incidence                        |  |
| Normal                                              | r = angle of refraction                       |  |
|                                                     |                                               |  |
| of incident                                         | As the light passes from air into the         |  |
|                                                     | material it bends <b>towards</b> the normal.  |  |
| Refracted Ray                                       | If the light passes from the material         |  |
| Angle of refraction $\frac{\sqrt{r}}{r}$            | into the air it hends away from the           |  |
|                                                     | normal                                        |  |
|                                                     | normai.                                       |  |
| When drawing a refraction diagram the ar            | ngles of incidence and refraction <u>must</u> |  |
| be labelled. It is not good enough to simp          | ly put i and r.                               |  |
| The angle of incidence and angle of refrac          | tion <u>must</u> be measured from the         |  |
| normal. It is always best to draw the norm          | nal line first before completing the path     |  |
| of the ray of light. The normal is <b>always at</b> | t <b>90°</b> to the boundary of the two       |  |
| materials.                                          |                                               |  |
| Extra space for additional information.             |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |
|                                                     |                                               |  |

#### Section 4 – Nuclear radiation

| An atom has three particles; protons, electrons and neutrons. Protons and              |
|----------------------------------------------------------------------------------------|
| neutrons are found in the nucleus while electrons orbit the nucleus.                   |
| An alpha particle ( $\alpha$ ) is 2 protons and 2 neutrons or called a Helium nucleus. |
| A Beta particle ( $\beta$ ) is a fast moving electron which comes from the nucleus.    |
| A Gamma ray (γ) is not a particle but is a high energy electromagnetic wave.           |
| Alpha ( $\alpha$ ) is absorbed by a sheet of paper or a few cm of air.                 |
| Beta ( $\beta$ ) is absorbed by a few mm or aluminium or 1 metre of air.               |
| Gamma (y) is absorbed by a few cm of lead or several metres of concrete.               |
| Ionisation is when a neutral atom gains or loses an electron.                          |
| Alpha causes the greatest ionisation so has the largest ionisation density.            |
| Nuclear radiation can be used in medicine in power stations and in industry.           |
| In medicine, nuclear radiation is used to treat cancer using radiotherapy and to       |
| sterilise hospital equipment. It can do this because nuclear radiation can kill cells. |
| Radioactive tracers can be injected/swallowed by the patient to examine organs         |
| in the body. This is done because the tracer can be detected easily and has a          |
| short half-life. Gamma radiation is used as alpha and beta would be absorbed by        |
| the body tissue.                                                                       |
| In power stations, nuclear radiation is used as when a nuclear fission reaction        |
| takes place large amounts of energy are released which can be used to generate         |
| electrical energy.                                                                     |
| In industry a leaking underground pipe can be detected by using a radioactive          |
| tracer to the liquid. A higher count-rate of gamma radiation will be detected at       |
| the leak than elsewhere.                                                               |
| Nuclear radiation must be used safely. There are precautions that must be taken        |
| when handling it. These are;                                                           |
| Using tongs/gloves                                                                     |
| Point away from body                                                                   |
| Hold at arms length                                                                    |
| Wash hands after use                                                                   |
| Never put close to your eyes                                                           |
| Background radiation is naturally occurring radiation from our surroundings.           |

| The total annual exposure of ionising radiation is made up of mostly background                                                                                                                                                                               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| radiation but also some artificial (man-made radiation).                                                                                                                                                                                                      |  |  |
| Examples of natural background radiation are;                                                                                                                                                                                                                 |  |  |
| Radon gas                                                                                                                                                                                                                                                     |  |  |
| Rocks                                                                                                                                                                                                                                                         |  |  |
| Cosmic rays from space                                                                                                                                                                                                                                        |  |  |
| Food and drink                                                                                                                                                                                                                                                |  |  |
| Examples of artificial (man-made) radiation are;                                                                                                                                                                                                              |  |  |
| <ul> <li>Medical i.e. radiotherapy, x-rays etc</li> </ul>                                                                                                                                                                                                     |  |  |
| Nuclear waste from power stations                                                                                                                                                                                                                             |  |  |
| Absorbed dose = $\frac{\text{Energy}}{\text{mass}}$ <b>D</b> = $\frac{\text{E}}{\text{m}}$ where absorbed dose is measured in Grays,                                                                                                                          |  |  |
| Gy OF JKg .                                                                                                                                                                                                                                                   |  |  |
| The absorbed dose is defined as the energy absorbed per unit mass of the                                                                                                                                                                                      |  |  |
| absorbing material. 1 Gray = 1 Joule per Kilogram.                                                                                                                                                                                                            |  |  |
| This means that the smaller the mass of absorbing material the greater the                                                                                                                                                                                    |  |  |
| absorbed dose.                                                                                                                                                                                                                                                |  |  |
| Equivalent dose = Absorbed dose x Radiation weighting factor $H = D W_R$                                                                                                                                                                                      |  |  |
| where equivalent dose is measured in Sieverts, SV and $W_R$ has no units.                                                                                                                                                                                     |  |  |
| The radiation weighting factor takes into account the type of radiation and can be                                                                                                                                                                            |  |  |
| found in a table in the data sheet which is given for any assessment.                                                                                                                                                                                         |  |  |
| The equivalent dose is a measure of the biological effect of radiation. In other                                                                                                                                                                              |  |  |
| words the risk of there being damage caused to the cells in your body. The                                                                                                                                                                                    |  |  |
| greater the equivalent dose the greater the risk of cell damage.                                                                                                                                                                                              |  |  |
| There are three ways to reduce the equivalent dose.                                                                                                                                                                                                           |  |  |
| There are three ways to reduce the equivalent dose,                                                                                                                                                                                                           |  |  |
| <ul> <li>Use shielding</li> </ul>                                                                                                                                                                                                                             |  |  |
| <ul> <li>Use shielding</li> <li>Limit time of exposure</li> </ul>                                                                                                                                                                                             |  |  |
| <ul> <li>Use shielding</li> <li>Limit time of exposure</li> <li>Increase distance from the source</li> </ul>                                                                                                                                                  |  |  |
| <ul> <li>Use shielding</li> <li>Limit time of exposure</li> <li>Increase distance from the source</li> </ul>                                                                                                                                                  |  |  |
| <ul> <li>Use shielding</li> <li>Limit time of exposure</li> <li>Increase distance from the source</li> </ul> The risk of biological harm depends on; <ul> <li>The absorbed dose</li> </ul>                                                                    |  |  |
| <ul> <li>Use shielding</li> <li>Limit time of exposure</li> <li>Increase distance from the source</li> </ul> The risk of biological harm depends on; <ul> <li>The absorbed dose</li> <li>The type of radiation</li> </ul>                                     |  |  |
| <ul> <li>Use shielding</li> <li>Limit time of exposure</li> <li>Increase distance from the source</li> </ul> The risk of biological harm depends on; <ul> <li>The absorbed dose</li> <li>The type of radiation</li> <li>The type of tissue exposed</li> </ul> |  |  |

| Safety limits are put in place to reduce the annu                              | al exposure of ionising radiation             |
|--------------------------------------------------------------------------------|-----------------------------------------------|
| for places that use ionising radiation;                                        |                                               |
| Annual effective dose limit for radiation worker                               | is 20 mSv.                                    |
| Annual effective dose limit for a member of the                                | public is 1 mSv.                              |
| To calculate the time a radiation worker can spe                               | nd with a radioactive source the              |
| equivalent dose rate must be used.                                             |                                               |
| Equivalent dose rate = $\frac{\text{Equivalent dose}}{\text{time}}$ <b>H</b> = | $=$ $\frac{H}{t}$ where H is usually measured |
| in Svh <sup>-1</sup> (Sv per hour) but can be a different unit                 | of time like days.                            |
| Activity is defined as the number of decays per s                              | second. For this reason the time              |
| used in the calculation must be measured in SEC                                | CONDS!                                        |
| The activity of any radioactive source decreases                               | with time.                                    |
| Half-life is defined as the <b><u>time taken</u></b> for the <u>acti</u>       | vity of a radioactive source to               |
| half from its original value.                                                  |                                               |
| A short half-life (a matter of hours) is desired in                            | radioactive tracers so that the               |
| activity will decrease to a safe level in a short tin                          | ne. A longer half-life is desired in          |
| situations where the source is to be used over a                               | nd over again.                                |
| 80 <b>.</b>                                                                    | lalf-life can be calculated from a            |
| 70 - g                                                                         | raph by observing the time taken              |
| 9 60 - fr                                                                      | or the activity to half.                      |
| τ                                                                              | he initial activity was 80 and after          |
| <sup>8</sup> / <sub>30</sub> 2                                                 | days the activity has halved to               |
| 20 4                                                                           | 0 so the <u>half-life is 2 days</u> .         |
|                                                                                | he half-life is the same value                |
| 0 1 2 3 4 5 6 7 8 9 10<br>Time (Days) e                                        | each time the activity is halved.             |
|                                                                                |                                               |
| Half-life can also be calculated using data. In que                            | estions like this the aim is to half          |
| the activity the correct number of times. There i                              | s no equation in half-life                    |
| questions.                                                                     |                                               |
| Nuclear fission is when a nucleus of large mass s                              | plits into two nuclei of smaller              |
| mass with the release of energy.                                               |                                               |
| A chain reaction is when nuclear fission repeats                               | itself over and over.                         |

| Nuclear fusion is when two nuclei of small mass combine to form one nucleus of    |  |  |
|-----------------------------------------------------------------------------------|--|--|
| large mass with the release of energy.                                            |  |  |
| Nuclear fission produces a lot of radioactive waste compared to nuclear fusion.   |  |  |
| The waste must be stored safely as it has a long half-life which means it will be |  |  |
| radioactive for a long time and can therefore cause damage to living things.      |  |  |
| Nuclear fission and nuclear fusion can be used in nuclear power stations to       |  |  |
| generate electrical energy. This happens in the nuclear reactor where the energy  |  |  |
| produced changes water into steam. The steam turns turbines which spin            |  |  |
| generators and generate electrical energy.                                        |  |  |
| The five main parts of a nuclear reactor are;                                     |  |  |
| Fuel rods – Contains Uranium fuel                                                 |  |  |
| <ul> <li>Moderator – Slows down <u>neutrons</u></li> </ul>                        |  |  |
| <ul> <li>Control rods – Absorbs <u>neutrons</u></li> </ul>                        |  |  |
| Coolant – Cools down the reactor and changes water into steam to turn             |  |  |
| the turbines.                                                                     |  |  |
| Containment vessel – Prevents radioactive materials escaping.                     |  |  |
| In nuclear fusion reactors the main safety precaution is to prevent the plasma    |  |  |
| touching the walls of the reactor as the walls will melt. This is done by using   |  |  |
| powerful magnets.                                                                 |  |  |
| Advantages of nuclear power stations are;                                         |  |  |
| • Produce much more energy per kilogram than fossil fuels.                        |  |  |
| Produce no greenhouse gases.                                                      |  |  |
| Disadvantages of nuclear power stations are;                                      |  |  |
| Radioactive waste needs disposed of safely.                                       |  |  |
| Risk of accidents.                                                                |  |  |
| Limited resources of Uranium.                                                     |  |  |
| Extra space for additional information.                                           |  |  |
|                                                                                   |  |  |
|                                                                                   |  |  |
|                                                                                   |  |  |
|                                                                                   |  |  |
|                                                                                   |  |  |